ETUCRYOR-R9a0
FEeaSETE ™

REG >> 13188131

CREG >> 1 8141213

Piﬁ
101111300110

EDUCATOR-R000

I rEE ay bkl
m»sastaaa:mw
o-nn»ssasx:xzmn

??mooooooooc..

P97y
197y

® 314 cc
- COMMAND ?

Photo 1: In this example,
Educator-8080 is shown
before (left) and after
(right) the execution of an
XRA A instruction. The
effect of this instruction is
of course to clear the ac-
cumulator A, as is shown
at the right.

Explore an 8080
with Educator-8080

Charles P Howerton
President, Digital Group Software Systems Inc

PO Box 1086

Arvada CO 80001

What Is an Educator?

Educator-8080 was designed as a class-
room instruction aid for a microprocessor
programming course. The principal design
goals were to develop a system which would
illustrate the architecture of the machine
and the effect of the execution of various
instructions. For example, the reader might
ask to what use the logical EXCLUSIVE OR
function may be put in an 8080. This
function, which operates on each bit, has a
value of 1 if either of the two operands or
arguments, but not both, has a value of 1;
otherwise it has a value of 0. The Edu-
cator-8080 can simply illustrate this
function. In the example shown in photo 1
(left and right), both arguments of this
function are equal: the first argument is the
value in the accumulator (A) and the second
argument is also the value stored in the
accumulator (A). The function value (ie: the
result) is placed in the accumulator after

22

execution. The left photo shows the ac-
cumulator (and other registers, etc, which
are not affected) before execution of the
instruction XRA A, and the right photo
shows it after execution. The result is that
the accumulator (A) is cleared, ie: it con-
tains eight O bits. This result is consistent
with the definition of the EXCLUSIVE OR
above: Whenever both bit arguments are O,
or are 1, a value of 0 is returned. This
example shows that the Educator-8080 is a
convenient means to illustrate rather com-
plex operations which facilitate learning the
instruction set and architecture without the
tedium of plowing through books. A sub-
ordinate goal was to implement the entire
system with the exception of the physical
input output routines and the stack in 1024
bytes of memory. All of the design goals
were met. In addition, if the 10 devices are
ASCII oriented, a reduction in the length of
the error messages (perhaps limiting them to
the error code number) should provide
sufficient space for the inclusion of the
physical input output routines and the stack
within the 1 K byte memory space.
Educator-8080 is written in a fairly
straightforward manner and it should not be
particularly difficult to adapt it to any 8080
system with more than 1 K bytes of pro-

S —

grammable memory, a keyboard, and an
output device of some kind. It is designed to
operate with a television display device and
to dynamically show the results of the
execution of the input commands.

It would probably be desirable to modify
the display function somewhat if the output
device is a hard copy device such as a
Teletype. The content could be the same but
the elimination of blank lines and printing
the titles only every 10 or 15 instructions
would speed things up considerably on a
Teletype device. The input output routines
required to adapt Educator-8080 to almost
any system are described functionally but
are not given in detail. They should be
adapted from routines already in use for a
given system.

The Instruction Set

The Educator-8080 instruction set is a
subset of the 8080 instruction set. The
commands implemented within Edu-
cator-8080 were selected to provide repre-
sentative instructions from most of the
functional instruction groups. Since the in-
structions are to be executed one at a time
from keyboard input, there was no need to
incorporate any of the Jump, Call or Return
instructions; however, since the flags are
displayed after each operation, it is very easy
to determine whether or not a given con-
ditional Jump, Call or Return would cause a
transfer of control by simply observing the
setting for the flag whose status is being
tested. In addition, because of memory
limitations none of the instructions which
cause memory to be read or written were
implemented. Finally, no instruction whose
action could not be readily observed was
implemented.

To keep the display as uncluttered as
possible the registers which could be ac-
cessed by Educator-8080 instructions were
limited to the accumulator and the B and C
registers. It would not be particularly dif-
ficult to incorporate the rest of the registers
into the display and as operands for the
Educator-8080 instruction subset. However,
unless the ability to address memory is
desirable the only instructions which could
be added to the subset would be the DAD
and the XCHG.

The instruction subset and the valid
operands for each instruction are shown in
table 1. Table 2 contains the corresponding
information as it is loaded into the com-
puter’s memory and used by Educator-8080.

Immediate Operands

Almost half of the instructions supported
by Educator-8080 require immediate

Table 1: Command List for Educator-8080. In order to illustrate the
operations of the 8080 processor, Educator-8080 interprets a subset of the
8080’s instructions. The subset generally references the accumulator, A, and
registers B or C; it excludes all branching and program control operations.
The complete list of available operations is found in this table.

Command

ACI 1

ADC r

ADD r
ADI i

ANA r

ANI i

CMA

cmC

CMP r

CPI i

DAA

DCR r

DCX rp
INR r

INX rp
MVIr,i

MOV r,s

NOP
ORA r

ORI i

RAL

RAR

RLC

RRC

SBBr

SBI i

STC
SUB r

SUli

XRAr

XRI i

Values for
FLAGS:

23

Description of Operation

Add the value of the Carry Flag and the value of the
immediate operand i to the contents of the
accumulator

Add the value of the Carry Flag and the contents of
register r to the contents of the accumulator

Add the contents of register r to the accumulator
Add the value of the immediate operand i to the
accumulator.

Logically AND the contents of register r with the
accumulator.

Logically-AND the value of the immediate operand
i with the contents of the accumulator.
Complement the contents of the accumulator,
changing all of the zeros to ones and all of the ones
10 zeros.

Complement the value of the Carry Flag; if it is
zero make it one, or if it is one make it zero

Compare the contents of register r with the contents
of the accumulator

Compare the value of the immediate operand i with
the contents of the accumulator.

Decimal adjust the value in the accumulator (after an
arithmetic command using decimal numbers)
Decrement (subtract 1 from) the contents of
register r

Decrement the contents of the register pair rp.
Increment (add 1 to) the contents of register r
Increment the contents of the register pair rp

Move the value of the immediate operand i into
register r

Move the value of the contents of register s into
register r leaving s unchanged.

No operation: do nothing

Logically OR the contents of register r with the
accumulator

Logically OR the value of the immediate operand

i with the accumulator

Rotate the contents of the accumulator left one bit
position with the high order bit going to the Carry
Flag and the Carry Flag going into the low order bit
of the accumulator

Rotate the contents of the accumulator right one
bit position with the low order bit of the accumulator
going into the Carry Flag and the Carry Flag going
into the high order bit of the accumulator.

Rotate the contents of the accumulator left one

bit position with the high order bit going into both
the low order bit and the Carry Flag.

Rotate the contents of the accumulator right one bit

position with the low order bit going into both the
high order bit and the Carry Flag

Subtract the values of the Carry Flag and register r
from the accumulator

Subtract the values of the Carry Flag and the
immediate operand i from the accumulator.

Set the Carry Flag to a 1 value.

Subtract the contents of register r from the
accumulator.

Subtract the value of the immediate operand i from
accumulator.

Logically Exclusive OR the contents of register r
with the accumulator.

Logically Exclusive OR the value of the immediate
operand i with the accumulator.

i - any valid immediate operand (see text).
r = any one of the three registers displayed A, B, or C.

x

I

2

rp = must be the register pair B and C which is designated B.

s - any one of the three reqisters displayed A, B, or C

X = Changed value depends on operands and command
0 = Reset to zero always

1 - Set to one always.

N - Not changed by this command.

—Flags—
ZS A

X X X

R TR,
2 I
LN S S

(o}

X

BN &Y s 2

=

1 rhEay ekl

B-REG >> 1 1113411114897 FF

CREG >> 1 84411411 37FF

rzong
000001100110

COMMAND ? MDD B

4 318
coMmD ?

operands. An immediate operand is a con-
stant value which is part of the instruction
being executed and it immediately follows
the operation code of the instruction, hence
the name immediate.

Whenever a single byte ‘“‘constant” is
required in a program, its inclusion as the
immediate value of an appropriate instruc-
tion reduces the length of the program
because there is no need to address the value

RY o OCT HX
BAEG M iiiiiisavrer
chAEG D iiissiisavrer

Piﬂ
4 1111001100 34cCc

Photo 2: What happens
when an 8080 executes an
ADD B nstruction? A
specific example is il
lustrated in this set of be-
fore and after snapshots.

directly. Immediate values have an implied
address which is the address of the byte
following the opcode and this address is
supplied from the program counter register
automatically whenever an immediate type
instruction is executed. In the Edu-
cator-8080 system the “program counter” is
provided by the operator’s sequence of
commands which are executed one by one.

Educator-8080 has three different types

of immediate values as part of the input
command and defaults to one of these types
Table 2: Operation Code Table for the Educator-8080 program. Table 1 if the input command omits type
showed the command list for the program. This table gives the absolute information.
machine codes for the command table beginning at address <2>/122. Each The general form of an immediate
command is represented by a 3 byte ASCIl character string mnemonic operand is as follows:
followed by the naked (without register values) 8080 operation code and the TpVp
; address of the routine which interprets the command. The routine name is Where: T is the type code which designates
| shown symb'o//.'cally in the right hand column, and can be found in the the form of the immediate value and
' program of listing 1. may be any of the following:
B — for a binary immediate value

ASCII e O cta) (Cotay: e Routine f £l di |
Address Mnemonic Mnemonic Opcode Routine Name Q — for an octa 'mme_ late Ya ue :
| H — for a hexadecimal immediate
| <2 >/1228 L *ACHI 101 103 111 316 212<1> IMMED Gl
<5>11800 FADC! 101 104 103 210 152<1> RG210 : . ;
| <2>/136 'ADD’ 101 104 104 200 152<1> RG210 If the type code is omitted entirely
: <§>ﬂg‘2‘ '23!& :8} }?g 1(1)} ggg $;§<:> W(I;“QE(I)D and the first nonpunctuation character
l < > 9 L < > R . . L
| <25/160 ‘AN’ 101 116 111 346 212<1> IMMED encountered is a numeric digit O_to T
<2>/166 'CMA’ 103 115 101 057 144<1> DIRCT then a default type of octal is as
=2 174 SCNC 103 115 103 077 144<1> DIRCT timed
{ <2>/202 ‘CMP’ 103 115 120 270 152<1> RG210 p is any form of punctuation (eg:
l <2>/210 ‘CPI’ 103 120 111 376 212<1> IMMED single or double quotes, parentheses,
<2>/216 '‘DAA’ 104 101 101 047 144<1> DIRCT ete] Punctuation is notiredlired and
? <2>/224 'DCR’ 104 103 122 005 245<1> RG543). Lolae o A q el i
| <2>/232 ' '‘DEX' 104 103 130 013 264<1> RG54B provision for its inclusion Is solely in
‘, <2>/240 ‘INR' 111 116 122 004 245<1> RG543 the interest of enabling the user to
; <2>/246 ‘INX’ 111 116 130 003 264<1> RG54B : :
1 <2>/254 MOV’ 115 117 126 100 145<1> MOVRT enter commands in a format consistent
‘ with that of various advanced assem-
| <2>/262 'MVI’ 115 126 111 006 205<1> MVIRT blers.
<2>/270 ‘NOP’ 116 117 120 000 144<1> DIRCT : : :
| <2>/276 'ORA’ 117 122 101 260 152<1> RG210 V is the value of the immediate
| <2>/304 ‘ORI’ 117 122 111 366 212<1> IMMED operand expressed in a form consistent
<2>/312 ‘RAL’ 122 101 114 027 144<1> DIRCT with the explicit or implied type
<2>/320 ‘RAR’ 12201010 1220 S037. = 144 <1>"EDIRCH
<2>/326 'RLC’ 122 114 103 007 144<1> DIRCT selected. The form and content of the
<2>/334 ‘RRC’ 122081225103 =017 144<1> DIRCT value field for each type is as follows:
<2>/342 ‘SBE' 123 102 102 230 152<1> RG210 gy s d serics DN REREETT
| <2>/350 ‘SBI' 123 102 111 336 212<1> IMMED secutive numeric characters which
: <2>/356 (STCE 123 124 103 067 144<1> DIRCT have the value zero or one.
= <2>/364 'SUPB’ 123 125 102 220 152<1> RG210 :)] :
{ =25 /3728 W sUI; 123 125 111 326 212<1> IMMED Example: B’11000111°. V is
; <3>/000 ‘XRA’ 130 122 101 250 152<1> RG210 11000111, quotes are optional.
‘ <3>/006 ‘XRI’ 130 122 111 356 212<1> IMMED T = Q or T omitted: V is a series of

3 kA ay D

EG > 3113223339007

CfEG > 0000OOIOOGBM™®

Photo 3: To illustrate the “m ;ﬁﬁ

use of hexadecimal im- 3 8000 iL2 MY l‘ 9011001100 314cCC
mediate values, this photo COND ? M2 W CY corTeD ? ;

shows the operation of

XRIVHCS.,

Listing 1: The Educator-8080 program expressed as an absolute assembly language listing. The notations <0>, <1>, <2> and
<3> are used to denote the high order (page) address bytes of four consecutive pages in memory address space. When loading
the program into a given system, these notations become bytes with consecutive octal values. Thus to load the program at
location 200/000 in memory address space, the values utilized would be 200, 201, 202 and 203.

address octal-code Iabel op operand commentary

*The control routine is the top of the structure and controls the operation of the entire program.

three consecutive numeric CharaCterS <0>/000 061 xxx xxx CNTRL Lxi SP, STACK Set stack pointer to programmable memory;

H o1 <0>/003 315 026 <0> NOTZER CALL DSPLY Display contents of registers;
which have octal digit values of from 0 <05/006 315 316 <0> CALL CMDNT Enter a command;
to 7 <0>/011 315 063 <1> CALL FETCH Fetch the correct opcode;

3 S , <0>/014 267 ORA A Set zero flag as per contents;
. i <0>/015 302 003 <0> JINZ NOTZER Jump if not zero error occurred;

Example. Q 307 Vis 307’ quotes are <0>/020 315 030 <2> CALL XQTER Go the current H
Optionaj g <0>/023 303 003 <0> JMP NOTZER Loop forever;

T=H: V is a pair of consecutive charac-

A % A *This display routine controls the generation of the dynamic display.
ters which have hexadecimal digit

<0>/026 041 167 <3> DSPLY LXI H,TITLS Load address of titles into HL;
values from O to F. <0>/031 315 261 <0> CALL CHEDT Display titles;]
5 ; <0>/034 041 257 <3> LXI H,BLINE Load addr of BLINE title;
Example: H'CT'V is C7, quotes are S0o/0e2 918 132 <o CALL DSPOV o e e
. onvert an I ay,;
optional. <0>/045 041 271 <3> LXI HCLINE Load addr of CLINE tite:
<0>/050 072 350 <3> LDA CRE Load contents of CREG into A;
% i B <0>/053 315 132 <0> CALL DSPCV Convert and display;
With the exception of the move imme- <0>/056 041 304 <3> LXI H,AFHDR Load addr of A 'flags title;
: A s <0>/061 315 261 <0> CALL CHEDT Display titles;
diate (MVI) command which requires a <0>/064 052 346 <3> LHLD PSWA Load flags and A into HL;
s 7 A ; . <0>/067 175 MOV AL Move flags to A;
destination register, immediate commands <0>/070 346 004 ANI B'00000100° AND off all but parity flag;
! <0>/072 315 237 <0> CALL DSPFG Display the flag value;
are entered as the mnemonic opcode fol- <0>/075 175 MOV AL TRERI Y
3 . v <0>/076 346 100 ANI B'01000000" AND off all but zero flag;
lowed by the immediate operand in any of <0>/100 315 237 <0> CALL DSPFG Display the flag value;
. . <0>/103 175 MOV A Move flags to A;
its valid fO‘l:mS- . <0>/104 346 200 ANI 810000000’ AND off all but sign flag;
) <0>/106 315 237 <0> CALL DSPFG Display the flag value;
Some “before and after” examples of S e it i)
z 1 <0>/112 346 020 ANI B‘00010000" AND off all but auxiliary carry flag;
E}:IUC&tO; 8?]80 ;Or;mlands]ire Shown in <0>;1'l4 315 237 <0> CALL DSPFG Display the flag value;
photos 1 through 3. In each case, a com- 0520 348 001 NI 8100000001 AND off il put carry flag:
Ty flag;
d i t d 1 i th k b d f th <0>/122 315 237 <0> CALL DSPFG Display the flag value; ot
man IS ype In OE € ey oar O e <0>/125 174 MOV AH Move A register value to A;
2 <0>/126 315 137 <0> CALL DSPCN Display with no title print;
Compu‘ter’ then the d_ucator 8080 dlSpIay <0>/131 31 RET R'otum:(:.theCNlTF:Lmu(ina;
following the command is depicted.
1 *The display conversion routine prints binary, octal gnd hexadecimal. *
Entering Commands <g>ﬂg§ g?s S DSPCV PUSH PSW Save output value for CHEDT; 2
<0> 5 261 <0> CALL CHEDT Display line title addr in HL;
Commands are entered into SoN3 0% o Wi o Rt s oout alu;
<0> 10 DSPCN MVI £,0010' Move 8 to E register;
. 3 <0>/141 007 DSPBT RLC Rg::te MDSB ir:?clfca;rrv and LSB;
Educator-8080 as a string of characters (eg: <0>/142 365 PUSH PSW Save current value;
: <0>/143 346 001 ANI Q001 AND off all but LSB;
letters, numbers, spaces and punctuation) <goias 318 237 <0> CALL DSPFG Go display bt value;
M . <0> i lue;
followed by a command termination charac- <onst oas DCR E Decroment 100p county
ter. As written, Educator-8080 assumes that s e Bl DAL A e PR e i
. . . <0>/N1 O' i H .
the command termination character will be o SR R s O MSB to Carry: Carey to LSB,
l an ASC” carriage-return (OCtal 01 5) HOW' zgiﬂg; gg; gﬁt dott“-:sg:;nm'esforoctal digit;hift;
<0>/163 365 PUSH PSW Sa t value;
ever, any other keyboard character code <0>/1e4 346 007 ANI Q007 AND off all but octal LSD;
i o <0>/166 366 060 ORI Q’'060° OR on bits to make ASCI| numeric character;
may be Used as the.comma’nd termlnatlon <0>/170 315 xxx xxx CALL CHRPR Output the character;
character by changlng the value of the <0>/173 361 POP PSW Retrieve saved current value;
i ¢ : : i <0>/174 035 DCR E Decrement loop count; 1
immediate Operand in the instruction lo- <0>/175 302 160 <0> INZ DsPQT Jump if loop count not zero; e
3 <0>/200 315 251 <0> CALL DSPSP Output a space;
cated at address <0>/341 which tests for <0>/203 036 002 MVI E,Q'002' Move 2 to E;
3 x S <0>/205 007 DSPHT RLC Rotate MSB into Carry and LSB,
command termination. (See listing 1.) <0>/206 007 RLC do it again,
o P AT <0>/207 007 RLC four times for,
Since it is not uncommon to make errors <0>/210 007 RLC hexadecimal shift;
¥ g s 7! <0>/211 365 PUSH PSW Save current value; 1
when keying information into a computer, 0>212 6 o7 AN B00001111° AND off all but hexadecimal LSD:
pa ; ‘060’ Add on bi ke ASCII ic ch :
two provisions have been made in Edu- <ome 36 oz ci aorz el a0l o ot ;
: AR - <0> J DSPHS If i ki j ; i
cator-8080 for correcting or eliminating 205/223 306 007 ADI Qo007 Rad 7 ging ASCIT A thru ‘P sodes: '

25 i

Listing 1, continued:

address

=, <0>/225
<0>/230
<0>/231
<0>/232
<0>/233
<0>/236

octal-code

315 xxx
361
000
035
302 205
an

XXX

<0>

DSPHS

operand

CHRPR
PSW

E
DSPHT

commentary

Output the character;
Retrieve saved current value;

Decrement loop count;
Jump if loop count not zero;
Return to calling routine;

*Display flag or binary digit followed by a space. Alternate entry is used to display a space.

<0>/237
<0>/242
<0>/244
= <0>/246
<0>/251
<0>/252
=i <0>/254
<0>/257
<0>/260

312 244
076 001
306 060
315 xxx
365

076 040
315 xxx

311

<0>

XXX

XXX

DSPFG Jz
MVI
DSPFZ ADI
CALL
PUSH
MVI
CALL
POP
RET

DSPSP

*The character string output edit routine.

<0>/261
<0>/262
<0>/264
<0>/265
2> <0>/270
<0>/273
<0>/274
<0>/277
<0>/301
<0>/302
s <0>/304
<0>/307
<0>/310
<0>/313

*The command entry routine accepts input from the keyboard for commands.

176
376 200
310
322 277
3156 xxx
043
303 261
326 200
107
076 040
315 xxx

005
302 302
303 273

<0>
XXX

<0>

XXX

<0>
<0>

CHEDT MOV
CPI
RZ
JNC
CALL
CHEND INX
MP

CHSPA sul
MOV
MVI
CALL
DCR
INZ
JMP

CHSPL

<0>/316 041 332 <3> CMDNT LXI|
<0>/321 315 261 <0> CALL
<0>/324 041 352 <3> LXI
<0>/327 006 026 MV
= <0>/331 315 xxx xxx CMDKB CALL
<0>/334 376 014 CPI
<0>/336 312 000 <O0> Jz
<0>/341 376 015 CPI
<0>/343 312 376 <0> Jz
<0>/346 376 177 CPI
<0>/350 302 355 <0> JNZ
<0>/353 076 033 MvI
<0>/355 167 CMDST MOV
= <0>/356 315 xxx xxx CALL
<0>/361 043 INX
<0>/362 005 DCR
<0>/363 302 331 <0> JNZ
<0>/366 076 001 MVI
<0>/370 315 063 <2> CALL
<0>/373 303 000 <0> JMP
*The P! routine el
<0>/376 041 352 <3> CMDND LXI
<1>/001 345 PUSH
<1>/002 321 POP
<1>/003 076 026 MVI
<1>/005 220 suB
<1>/006 107 MOV
<1>/007 176 CMDNX MOV
<1>/010 376 033 CPI
<1>/012 302 027 <1> JNZ
<1>/015 076 352 MVI
<1>/017 273 CMP
<1>/020 322 055 <1> JNC
<1>/023 033 DCX
<1>/024 303 055 <1> JMP
<1>/027 376 060 CMDCH CPI
<1>/031 332 055 <1> Jc
<1>/034 376 072 CPI
<1>/036 332 053 <1> JC
<1>/041 376 101 CPI
<1>/043 332 055 <1> Jc
<1>/046 376 133 CPI
<1>/050 322 085 <1> JNC
<1>/083 022 CMDSV STAX
<1>/054 023 NX
<1>/055 043 CMDNS INX
<1>/056 005 DCR
<1>/057 302 007 <1> JINZ
<1>/062 311 RET
*The FETCH instr / d routine

<1>/063
<1>/066
<1>/070
<1>/071
<1>/074
<1>/076
<1>/077
<1>/100
<1>/103
<1>/104
<1>/105
<1>/106
<1>/111
<1>/112
<1>/113
<1>/114
<1>/115
<1>/116
<1>/117
<1>/120
<1>121

041 122
036 037

001 352
026 003

302 125

302 076

<2>

<3>

<1>

<1>

FETCH LXI
Vi
FLOOP PUSH
LXI
MVI
FCOMP LDAX
CmP
INZ

AM
Q200’

CHSPA
CHRPR

H
CHEDT
Q200
B.A
A,Q'040
CHRPR
B

CHSPL
CHEND

H,CMDMS
CHEDT

ERROR
CNTRL

all but letters and numbers.

H,OPTAB
E,Q'037'
H

B,CMDAR
D,Q'003"
B

M
FNXEL
B

Jump if passed value is a zero;
Otherwise move a 1 into A;

Convert into ASCII numeric character;
Output the character;

Save the flags and value in A;

Move space into A;

Output the space;

Retrieve the saved flags and A;

Return to the calling routine;

Move next character into A;
Compare it to 200 octal;

Return if equal it's end of string;
Jump if greater for space routine;
Else go output the character;
Increment the string index;

Loop for next character;
Subtract 200 octal from value;
Move space count to B;

Move space to A;

Output the space;

Decrement space count;

Jump if count not zero to start of loop;
Jump back into CHEDT loop;

Move address of ‘COMMAND ? “ to HL;
Display the message;
Move address of command input area HL;
Move maximum length to B;
Get an input character;
Is it a control-1 line delate?
If so then restart program;
Is it a carriage return?
If so then go compress input;
Is it a delete character?
If not then go store the character;
If so replace with back arrow;
Store input character in command buffer;
Display the input character;
Increment command work area index;
Decrement command length count;
If not full then reiterate;
If buffer full then select error
number 1 and print its message;
Restart the program;

Load HL with address of work area;
Push & pop move it to DE

as the compression pointer;
Load A with maximum length;
Subtract remaining length from B;
Move actual length to B;
Move command character to A;
Is it a back arrow (character delete)?
If not then go to other tests;
Low address byte of CMDAR to A;
Compare to current low address byte;
If not greater then skip save;
Else back up compression pointer;
Skip saving the character;
Is the character less than ‘0’7
If so then skip saving it;
Is the character less than ‘9" + 17
If so then save numeric value;
Is the character less than 'A'?
If so then skip saving it;
Is the character greater than ‘Z'?
If so then skip saving it;
Store character in compressed area;
Increment compression pointer index;
Increment input string pointer;
Decrement actual length count;
If length is not zero then reiterate;
Else return to CNTRL calling point;

and builds the object code.

Load address of opcode table HL ;

Move table element count to E;

Save current element address;

Load address of CMDAR into BC;

Move opcode length to D;

Load command character to A indexed by B;
Compare it to table character;

If not equal then go to next element;

t h index;
Increment table character index;
Decrement opcode length counter;
1f not zero continue test loop;
Exchange HL with top of stack;

Pop HL from stack to clear it;

Move naked opcode to E, D is zero;
Save naked opcode;

Increment table pointer;

Decode routine low address byte to E;
Increment table pointer;

Decode routine high address byte to D;
Move decode routine address to HL;

26

errors. The ASCII delete character code
(octal 177) is used to delete the last re-
maining character in the input string. Since a
deleted character is not considered to exist,
N consecutive delete characters will delete
the N preceding characters. For example, if
the delete character is shown as a back arrow
(«), RAX<L will be reduced to RAL and
CQP<«<MA will be reduced to CMA. Charac-
ters which have been keyed in are displayed
after they have been tested. The display
function uses the octal value 177 as a clear
screen control code; therefore, character
deletes are transformed into the back arrow
before they are displayed and stored. Edu-
cator-8080 users with systems which
have a back arrow (octal 033) key on their
keyboards may use it as a character delete
code and it will have the same effect as the
delete key assumed in this version. Users
who have neither of these keys can designate
any keyboard character as the delete charac-
ter code by changing the immediate operand
in the instruction located at <0>/346 which
tests for the delete character. (See listing 1).
The other, and somewhat more drastic,
method of eliminating keying errors is to
delete the entire input line. This is usually
done when an error is detected before the
command termination character is input but
several characters after the error occurred.
The procedure for deleting an entire line is
to enter an ASCII form feed code (octal
014) which is a ‘““control L combination on
typical ASCII keyboards. This will clear the
input line and restart the command entry
procedure. Like the command termination
and the character delete codes, the line
delete code can be made to be any keyboard
character by changing the value of the
immediate operand in the instruction at
location <0>/334 which tests for the line
delete code.

A very useful feature of Educator-8080
permits the user to execute the last com-
mand input several times. This is accom-
plished by simply keying the command
termination character when the system calls
for the entry of a new command. In order to
provide this facility the input buffer is not
cleared prior to calling for the entry of a
new command, so the last previously entered
command is still in the buffer. This feature is
especially handy when demonstrating the
effect of multiple executions of the rotate,
increment, decrement, arithmetic and logical
commands.

The general format for entering a com-
mand is as follows:

OPCODE[p OPERAND-1[p OPERAND-2]]t
Where:

OPCODE is the mnemonic opcode for the

command. For example; MOV
XRI, etc.

p is any desired form of punctua-
tion or a space. p is not required
and, therefore, may be omitted
entirely.

OPERAND-1is the first or only operand re-
quired by an instruction. It may
be a register identification or an
immediate value. See table 1 for
the operand requirements.

OPERAND-2is the second operand where re-
quired by a specific instruction.
See table 1.

t is the command termination char-
acter, an ASCII carriage return in
the listing 1 version of Educator-
8080.

The brackets ([]) shown in the general
format are used to indicate that the items
within them are optional, since some com-
mands do not require any operands (eg:
RAL, STC, CMA, etc), some require one
operand only (eg: ADI, CMP, XRA, etc),
and some commands require two operands
(eg: MOV and MVI).

Error Messages

In the process of entering and executing
commands under Educator-8080 there are a
number of errors which can occur. When this
happens an error message is displayed on the
output device. For the benefit of users with
television displays, a delay of approximately
two seconds occurs as the message is being
displayed, to provide time to read it. After
the two second delay the normal Edu-
cator-8080 display is generated and the
command entry mode is reentered. Teletype
or other hard copy users will probably wish
~ to alter the error display routine slightly by
eliminating the extraneous spaces which are
used to center the error messages on the TV
monitor screen.

The errors which can occur are listed in
absolute octal form in table 3. The error
numbers and extended explanations of con-
ditions are as follows:

1. INPUT TOO LONG: The input string
exceeds 22 characters in length pro-
bably because too many characters
were deleted since delete character
codes count as input characters. Twen-
ty two characters should be sufficient
for any normal entry including punc-
tuation and several character deletes.

2. INVALID COMMAND: The input
command mnemonic is not one of the
ones implemented by Educator-8080.

3. INVALID REGISTER: The operand
register is not A, B or C for a
command which requires a single
register as an operand or it was not B

Listing 1, continued:

address octal-code label op operand commentary

<1>/122 321 POP D Unsave naked opcode to DE;

<1>/123 257 XRA A Clear A, no error code; H
<1>/124 351 PCHL Jump to address of decode routine;

<1>/126 001 006 000 FNXEL LXI B,Q'000006" Load double length 6 into BC; *
<1>/130 341 POP H Unsave current element address; 4
<1>/131 011 DAD B Add 6 to it;

<1>/132 035 DCR E Decrement table element count; 2
<1>/133 302 070 <1> JINZ FLOOP Reiterate to test next element;

<1>/136 076 002 Mvi A,Q'002 Move error code 2 to A;

<1>/140 303 063 <2> JMP ERROR Go display error 2, opcode unknown;

<1>/143 000 NOP No operation filler;

*The instruction decoder routines follow.
*Instructions using the DIRCT routine require no decoding. Example RAL, CMA, etc.

<1>/144 311 DIRCT RET Return to CNTRL for execution;

*The MOVRT is used only by the MOV command.

<1>/145 315 245 <1> MOVRT CALL RG543
<1>/150 267 ORA A
<1>/161 300 RNZ

Validate destination register;
Set flags based on A contents;
Return not zero with error;
Else fall thru to RG210;

*Instructions using the RG210 routine require a source register.

<1>/152 012 RG210 LDAX B Load next command character into A;
<1>/153 003 INX B I h index;
<1>/154 315 173 <1> CALL REGAN Analyze for valid register;

<1>/157 322 166 <1> JNC RGERR If CY=0 then register not valid;
<1>/162 203 ADD € Add naked opcode to register value;
<1>/163 137 MOV EA Move result back to E;

<1>/164 257 XRA A Clear A indicating no errors;
<1>/165 3n RET Return to CNTRL;

*The register error routine is used to indicate register designation errors.

Move error code 3 to A;
Go display error 3, invalid register;

<1>/166 076 003 RGERR MvI A,Q'003’
<1>/170 303 063 <2> JMP ERROR

*The register analysis and validation routine is used by RG543, RG210 and RG54B.
<1>/173 326 101 REGAN SuI Q'101’ Subtract an ‘A’ from the character;

<1>/175 376 003 CPI Q'003’ Compare the result to 3;
<1>/177 320 RNC If not less than 3 return with CY=0;

<1>/200 075 DCR A Decrement result: A=377, B=000, C=001;
<1>/201 346 007 ANI Q'007* AND off all but octal LSD;

<1>/203 067 STC Set CY=1 indicating no error;

<1>/204 3n RET Return to calling routine;

*The MVIRT is used only by the MVI command.

<1>/206 315 245 <1> MVIRT CALL RG543
<1>/210 267 ORA A
<1>/211 300 RNZ

Validate destination register;
Set flags based on A contents;
Return not zero with error;
Else fall thru to IMMED;

*Instructions requiring an immediate operand use the IMMED routine.

<1>/212 012 IMMED LDAX B Load next command character into A;
<1>/213 003 INX B | h index;
<1>/214 376 102 CPI Q102 Is the command character a ‘B‘?
<1>/216 312 301 <1> Jz BINRY If so then process as binary;

<1>/221 376 121 CPI Q121° Is the command character a ‘Q"?
<1>/223 312 336 <1> Jz OCTAL If so then process as octal;

<1>/226 376 110 CPI Q110 Is the command character an ‘H’?
<1>/230 312 367 <1> Jz HEX If so then process as hexadecimal;
<1>/233 376 070 CPI Q070 Is the command character less than ‘8'?
<1>/236 332 335 <1> Jc OCTAD If 50 then treat as octal;

<1>/240 076 005 MVI A,Q°005" Move error code 5 to A;

<1>/242 303 063 <2> JMP ERROR Go display error 5, invalid immediate;

*Instructions using the RG543 routine require a destination register.

<1>/245 012 RG543 LDAX B Load next command character into A;
<1>/246 003 INX Increment command character index;
<1>/247 315 173 <1> CALL REGAN Analyze for valid register;

<1>/252 322 166 <1> JNC RGERR If CY=0 then register not valid;
<1>/265 007 RLC Shift octal register value

<1>/256 007 RLC left three

<1>/257 007 RLC places;

<1>/260 203 ADD E Add naked opcode to shifted value;
<1>/261 137 MOV EA Move resuit back to E;

<1>/262 257 XRA A Clear A indicating no errors;
<1>/263 3an RET Return to calling routine;

*Instructions using the RG54B routine are INX and DCX.

<1>/264 012 RG548B LDAX B Load next command character into A;
<1>/265 003 INX h index;
<1>/266 315 173 <1> CALL REGAN Analyze for valid register;

<1>/271 376 000 CPI Q'000" Is the register a zero?

<1>/273 310 RZ If so it's ‘B’ so return;

<1>/274 076 004 MVI A,Q'004' Move error code 4 to A;

<1>/276 303 083 <2> JMP ERROR Go display error 4, invalid register;

*The BINRY routine converts a binary immediate value into usable form.

<1>/301 046 010 BINRY MVI H,Q'010 Move 8 to H for count;

<1>/303 012 BLOOP LDAX B Load next command character into A;

<1>/304 326 060 Sul Q'060' Subtract a ‘0’ from it;

<1>/306 376 002 CPI Q'002* Is the result less than 2?

<1>/310 322 330 <1> JNC IMMER If not then go display immediate error; ,;
<1>/313 345 PUSH H Save the count;

<1>/314 152 MOV LD Move D to L (immediate byte); |
<1>/315 051 DAD H Shift HL left one bit; i
<1>/316 205 ADD i Add L to bitin A; {

Listing 1, continued:

address

<1>/317
<1>/320
<1>/321
<1>/322
<1>/323
<1>/326
<1>/327

octal-code

127
341
003
045
302 303 <1>
257
31

label

RET

operand
DA
H
B
H
BLOOP
A

*The immediate error routine is used to indicate immediate value errors.

<1>/330
<1>/332

*The OCTAD entry point to the OCTAL routine is for the default condition.

<1>/335

“The OCTAL routine converts an octal immediate value into ussble form.

<1>/336
<1>/340
<1>/341
<1>/343
<1>/345
<1>/350
<1>/351
<1>/352
<1>/353
<1>/354
<1>/355
<1>/356
<1>/357
<1>/360
<1>/361
<1>/362
<1>/365
<1>/366

*The HEX routine converts a hexadecimal immediate value into usable form.

<1>/367
<1>/371
<1>/372
<1>/374
<1>/376
<2>/001
<2>/003
<2>/006
<2>/010
<2>/011
<2>/012
<2>/013
<2>/014
<2>/015
<2>/016
<2>/017
<2>/020
<2>/021
<2>/022
<2>/023
<2>/026
<2>/027

*The XQTER routine executes the generated object code for Educator-8080.

<2>/030
<2>/031

<2>/034
<2>/037
<2>/040
<2>/041

<2>/044
<2>/045
<2>/046
<2>/047
<2>/050
<2>/051

<2>/052
<2>/055
<2>/056
<2>/057
<2>/062

*The ERROR routine is used to display error messages.

<2>/063
<2>/064
<2>/067
<2>/072
<2>/073
<2>/076
<2>/077
<2>/100

*Note: HL now contains the address of the error message.

<2>/101
<2>/104
<2>/107
<2>/110

076 006
303 063 <2>

013

046 003

326 0860

376 010

322 330 <1>
345

302 340 <1>
7
31

046 002

012

326 080

376 012

332 010 <2>
326 007

376 020

322 330 <1>
345

051

045
302 3711 <1>
257
311

353
042 046 <2>
052 346 <3>
345

361
052 350 <3>
345

301
000
000
305

341
042 350 <3>
365

341
042 346 <3>
311

365
041 162 <3>
315 261 <0>

361
041 014 <3>
205
157
156

315 261 <0>
021 000 000
035

302 105 <2>

IMMER

OCTAD

OCTAL
oLoor

HEX
HLOOP

HCHOK

XQTER

xaroe

ERROR

ERTIM

MVI
JMP

DCX

MVI

RET

Mvi

RET

XCHG
SHLD
LHLD
PUSH
POP
LHLD
PUSH
POP
NOP
NOP
PUSH
POP
SHLD
PUSH
POP
SHLD
RET

PUSH
LXI
CALL
POP
LXI
ADD
MOV
MOV

CALL
LXI
DCR
INZ

A,Q°006"
ERROR

H,Q'003°
B

Q'060°
Q'010"
IMMER

=X
o

>

LOOP

>OI®IOrIIIS

H,Q'002°

XQaTorP
PSWA
H

PSW
BANDC
H

H
BANDC
PSW

H
PSWA

PSW.
H,ERRSP
CHEDT
PSW
H,ERTAB
L

LA

LM

CHEDT
D,Q'000000*

ERTIM+1

commentary

Move the result back to D;

Unsave the count;

Increment command character index;
Decrement the count;

If not zero then reiterate;

Clear A indicating no errors;

Return to CNTRL;

Move error code 3 to A;
Go display error 3, invalid immediate;

Decrement command character index;

Move a 3 into H for count;

Load next command character into A;
Subtract a ‘0 from it;

Is command character less than 8?

If not then go display immediate error;

Save the count;
Move D to L immediate byte;
Shift immediate

byte left

three bits;

Add L tovalue in A;
Move result back to D;
Unsave the count;

ent index;
Decrement the count;

If not zero then reiterate;
Clear A indicating no errors;
Return to CNTRL;

Move a 2 into H for count;
Load next command character into A;
Subtract a ‘0’ from it;
Is it less than 9" + 17
If so then numeric character is OK;
Else convert alphabetic to numeric;
Is character value greater than 15?
If so then invalid hexadecimal value;
Save the count;
Move D to L immediate byte;
Shift immediate
byte left
four
bits;
Add L to value in A;
Move result back to D;
Unsave the count;
Increment command character index;
Decrement the count;
If not zero then reiterate;
Clear A indicating no errors;
Return to CNTRL;

Move generated opcode to HL;

Store it at execution point;

Load working PSW & A into HL;

Push & pop sets values for
working register and flags;

Load working B and C into HL;

Push & pop sets values for
working B and C registers;

The command to be executed;

Immediate value or NOP;

Push B and C working register values;

Pop them into HL;

Store them in save area;

Push PSW and A working values;

Pop them into HL;

Store them in save area;

Return to CNTRL for next command; |;

Save error code in A;

Load address of error header spaces;
Go output error header spaces
Unsave error code;

Load address of error message table;
Add low address byte to error code;
Move result to L, points to offset;
Move offset to L;

Output the error message;
Load DE with timing loop value;
Decrement value in E 256 times;
Reiterate loop 256 times;

*The above JMP goes to the first 000 in the LX| command which is an effective NOP.

<2>/113
<2>/114
<2>/117
<2>N121

025

302 105 <2>
076 377

31

DCR
JNZ
MVI
RET

D
ERTIM+1
A.Q377"

Decrement D;

Reiterate outer loop 256 times;
Move a 377 to A indicating error;
Return to CNTRL;

*Note: for Teletype or hard copy output bytes <2>/104 thru <2>/116 can be replaced by 000 NOPs.

28

for the INX or DCX commands which
require register pairs as operands.

4. INVALID IMMED TYPE: The type
code for an immediate operand is not
B, Q, or H, or if the default was
attempted the first digit of the implied
octal value was not a digit from 0 to 7.

5. INVALID IMMED VALUE: One of
the characters in the immediate
operand value string was inconsistent
with the immediate type code. For
example, a digit in a binary input
string was not a zero or a one. This can
also be caused by not providing the
correct quantity of digits for the im-
mediate type specified; too few digits
will possibly cause a problem. If too
many digits are entered only the first
N will be used (N=8 for binary, N=3
for octal and N=2 for hexadecimal).

6. ERROR! This message should not
occur unless a grave internal error
occurs in Educator-8080.

Educator-8080 Program Listing

The Educator-8080 program is presented
in an assembly language format as listing 1.
It was hand assembled and, therefore, some
liberties were taken in the way it was
presented. Addresses are shown in a split
octal (“Intelese’”’) format of page and
address within page. Educator-8080 requires
four contiguous 256 byte pages of memory
(it just fits); to ease the implementation
process all addresses and address sensitive
bytes are shown with relative page numbers
in the format <P>,where P is a0, 1, 2 or 3.
A simple process of substitution as the
program is being put into the machine will
provide the ability to locate Educator-8080
in any four contiguous pages provided the
program begins on a page boundary.

The assignment of three addresses is left
to the user. These three addresses are shown
symbolically in both the source and the
object code. The first address is for the
location of the STACK; insert the address of
the stack in the command at location
<0>/000. The stack should be capable of
being at least 10 to 12 levels deep to
function correctly. The second and third
addresses are the addresses of the physical
input and output routines which must be
provided by the user. These routine ad-
dresses are shown symbolically as KEYBD
and CHRPR in the source listing. The values
are shown as ‘XXX XXX’ in the object code.

Input and Output Routines

The Educator-8080 program references
two subroutines for the purpose of exe-

Table 3:

Error Messages. This table consists of a list of address offsets (location <3>/014) followed
by the ASCII error message strings. The octal values 201 through 377 are used to encode from
1 to 177 spaces (1 to 127 decimal). The strings contain a single space for these codes. The octal
value 200 is used to indicate end of string, and is shown symbolically as the character “v”, The
octal value 177 is used to indicate the clear screen operation, and is shown symbolically as the
character ‘m”,

cuting 10 operations. The KEYBD sub- Address Octal Code ASCII String Value
routine iS used to read a single Character Of <3>/014 153 024 043 063 063 104 127 153 Address Offsets for messages O through 7
. . <3>/024 111 116 120 125 124 040 124 11 ‘INPUT TO /4
input from an ASCII keyboard device. The <3>/034 117 040 114 117 116 107 200 ! QILINS
CHRPR subroutine is used to display (or <3>/043 111 116 126 101 114 111 104 040 ‘INVALID COMMANDY *

5 o . <3>/053 1
print) a single character. These routines are L i W T :

3 s <3>/063 111 116 126 101 114 111 104 040 ‘INVALID REGISTER V *

not shown in the listings, but should be <3>/073 122 105 107 111 123 124 105 122
adapted from the routines normally used S G

o S & & <3>/104 111 116 126 101 114 111 104 040 ‘INVALID IMMED TYPEV '
with the particular system in which the <3>/114 111 115 115 105 104 040 124 131
program is run. Both KEYBD and CHRPR <3>;‘2“ 12330y <00

. <3>/127 111 116 126 101 114 111 104 040 ‘INVALID IMMED VALUEV
use the accumulator (A) to pass a single <35/137 111 115 115 105 104 040 126 101
character argument. KEYBD defines a value SSoudy Vit 20 0oe 00
<3>/153 105 122 122 117 122 041 200 ‘ERROR!V

in A obtained from the input device.
CHRPR displays the value in A on a device The following string is given the name “ERRSP’’ and is used to clear the screen, then space down to the

" v center prior to displaying an error message.
such as a video display or Teletype. All other

. <3>/162 177 377 377 211 20 LS\
registers of the 8080 processor should be left 0
unchanged upon return from either of these
routines. Entry to the 10 routines is shown
using a CALL instruction in these listings. A
corresponding RET instruction in the rou- Address Octal Code Nama ASCII Value
tine s.hou'ld return control when either <3>/167 177 211 105 104 125 103 101 124 TITLS ‘s EDUCAT °
operation is completed. An alternate method <3>/177 120 122 055 070 060 070 060 264 ‘OR8080
<3>/207 137 137 137 137 102 111 116 101 ‘< BINA’
of entry would be to employ the 8080 RST <3>/217 122 131 137 137 137 137 137 040 Rg‘}-ﬁ-ﬁ- .
; e 3 <3>/227 117 103 124 040 110 130 212 067 ‘OCT HX 7'
instruction in place of CALL. If the Edu sl s i s el s el 654 3"
cator-8080 listings accompanying this article <3>/247 040 062 040 061 040 060 250 200 HENE RS
i <3>/257 102 055 122 105 107 040 076 076 BLINE ‘B-REG >>
are useq without reassembly, then the CALL Sl o ohe e
instructions would be replaced by an RST <3>/271 241 103 055 122 105 107 040 076 CLINE “NCREG:
and two single byte NOP instructions. <3>/301 076 040 200 ZY
; <3>/304 240 106 114 101 107 123 046 101 AFHDR ‘ FLAGS&A '
The keyboard entry routine KEYBD <3>/314 103 103 227 120 040 132 040 123 leckPRZitSK
<3>/324 040 101 040 103 227 200 TN E R
; <3>/332 240 103 117 115 115 101 116 104 CMDMS * COMMAND *
Continued on page 75 <3>/342 040 077 040 200 N

Table 4: Educator-8080 standard display format messages. This table contains the definitions of
several character string messages which are used to format the output display device. As in table
3, the codes from octal 201 to 377 represent from 1 to 177 spaces transmitted. The character
“V” is used to indicate an end of text code, octal 200. The character ‘“®” js used to indicate a
clear screen code, octal 177.

SOLID STATES MUSIC PRODUCTS | 1/0 Boards 1702A* 1us $10.00 21121 $4.50
1/0-1 8 bit parallel input & output ports, | 1702A* .5us $13.00 74C89 $ 3.50
: : : : ¢ 2101 $ 450 74L89 $ 3.50
4Kx8 Static Memories common address decoding jumper se- 2111-1 $ 450 74200 $5.90
MB-1 MK-8 board, 1usec 2102s or equiv- lected, Altair 8800 plug compatible. 4002-1 $ 7.50 74L200 $5.90
alent. 1 4002-2 $ 7.50 8223 $ 3.00
i s SR A e Bt $103 Kit....o.. $42 PC Board only...$25 7489 $ 250 91L02A $ 2.55
MB-2 Altair 8800 compatible, may be *Programing send 32 ea $ 2.40
piggybacked for 8K x8. 1/0-2 1/0 for 8800, 2 poris committed, hex list $ 5.00 2602 $2.00
Kit (1us 2102s or equiv.) $112 pad;_?f 3 more, other pads for EROMS | po.c0 send for complete listing of 1C's and
Kit (.55us 91LO2AS) . v ccuunse $132 UART,etc. : P :
Kit..... $47.50 PC Board only ...$25 | istors at competitive prices. .
Erom Board Misc. MI KO S '
MB-3 1702A’s Eroms, Altair 8800 & Altair compatible mother board$45 419 Portofino Dr. ;
IMSA| 8080 plug compatlble, on board 32x32 Video board Kitc0u.. . $125 San Carlos, Calif. 94070
selection of address & wait cycles, 2K , 1 65 Busec y .
may be expanded to 4K, 2102’ [Etusee !; see ! Ak Check or money order only. Calif. residents 6% tax. All i
KIt2K (BA702A) o< ovvitunis s $145 | e $1.95 | $2.25 i T A i e v i
KitaKE (16 7O2A%) e s os $225 32 $59.00 $68.00 $76.00 subject to change without notice.

