A@ﬂﬁ@ﬁﬁaﬂ group software Systems .

TINY BASIC UNIVERSAL

This Tiny Basic tape contains three copies of Tiny Basic recorded in the
following order:

#1 TBX-TVCOS-TV-ONLY
#2 TBX-BAUDOT-TV & BAUDOT TTY
#3 TBX-ASCII-TV & ASCII TTY

Functionally the three versions are identical. The only variable is
the output print speed which is fastest for the TVCOS version and slowest for
the Baudot version. Most users with TTY equipment find it best to develop
their programs using the TVCOS version. They "SAVE" them to cassette tape
and "LOAD" them into the appropriate TTY version for hardcopy execution.

Each version of TBX is capable of making a copy of itself. Space
limitations did not permit room for the copy message to be in the "shopping
1ist"; however, if it had it would have read

—-——

] COPY TINY
* *

*

BASIC
*

*

As soon as you receive your TBX-UNIVERSAL tape you should do the
following:

1. Read in the TVCOS version and you will notice the following:

a) There will be a pause at the end of the read-in while the numbers
are still on the screen. During this pause TBX is adjusting
itself to your memory size.

b) The following message will appear on the screen

SCREEN SIZE 32/64?
REPLY 3 OR 6

If the message appears all on one line, you have a 64 character
screen so reply 6. If it appears on two lines, you have a
32 character screen so reply 3.

2. As soon as you have replied to the screen size message, the regular
"shopping 1ist" should appear on the screen. At this time insert a
blank cassette in your recorder, start it recording and press the @
(zero) key to make your own customized copy of TBX-TVCOS-UNIVERSAL.

-1-

po box 1086, arvada, colorado 80001
(303) 422-4566

The same procedure is followed to make your own copies of TBX-BAUDOT-
UNIVERSAL and TBX-ASCII-UNIVERSAL.

***NOTE: The only method possible because of space limitations to adapt
Tiny Basic to the 64 character screen was to insert a space
after every normally output character. While this may not
seem to be a very elegant solution, it does enable you to

continue running your TBX programs with the displays as you are
accustomed to seeing them.

@ﬁgﬁﬁaﬂ group software Systenms ..

Dear User:
Thank you for your order for TINY BASIC EXTENDED TV-CASSETTE OPERATED SYSTEMS.

The attached documentation should be more than sufficient to enable the user
who is already familiar with the BASIC language family to effectively use TINY
BASIC. For those users who have not worked with BASIC before, it is suggested
that they procure one of the many fine tutorials on the use of the BASIC Language.
There are a number of sources for BASIC manuals and one of the best is The People's
Computer Company at P. 0. Box 310, Menlo Park, California 94025.

Digital Group Software Systems, Inc. (DGSS) distributes a number of TINY
BASIC related products. At the present moment, these products are a series of
cassette tapes containing computer game programs. Each cassette contains five or
more games or "fun" type programs. The cost of each cassette is $5.00 and doc-
umentation is provided if requested.

TINY BASIC users are encouraged to develop additional games and programs
which run under the system. Users who submit games and/or programs to DGSS with
appropriate documentation and who consent to permitting DGSS to distribute copies
will be paid a small royalty for each copy sold. Submissions must include a
cassette tape containing the game or program and typewritten documentation as
required. A1l submissions will be acknowledged but cannot be returned unless
accompanied by a self-addressed stamped mailer. Obviously, if many users send
in submissions, there will be duplications. In this event, date of receipt and
quality of work will determine which contributors' submission will be utilized.
Royalties will be paid quarterly in cash or may be applied to the purchase of
products at a discounted rate.

We hope that you will enjoy the use of TINY BASIC and will advise us of any
problems which you encounter.

Sincerely,
Dianne W. Howerton
Vice President, Operations

1 Attachment

po box 1086, arvada, colorado 80001

TINY BASIC-EXTENDED TVCOS VERSION

I. INTRODUCTION

TINY BASIC EXTENDED (TBX) was created by Dick Whipple and John Arnold,
both of Tyler, TX, based upon the design criteria published in the September
1975 "People's Computer Company" (Vol. 4, No. 2). The Whipple and Arnold
TBX design was published in the January 1976 issue of "TINY BASIC Calesthentics
& Orthodontia". Dr. Robert T. Suding of The Digital Group, Inc., designed
and developed the software interfaces between TBX and the TV-Cassette Operating
System (TVCOS) used with The Digital Group, Inc. 8080 micro-computer. TBX-
TVCOS is a super-set of TINY BASIC as originally proposed and is a limited and
modified subset of the full BASIC language.

TBX-TVCOS is available in three standard versions dependent upon the amount
of memory available on the machine. These three versions are for 10K, 18K and
26K machines, respectively. A1l versions are upward compatible in that they
can run on larger machines. However, they do not take advantage of any
additional memory. Upon request, and for a nominal additional charge, a
customized version of TBX-TVCOS can be supplied for any.specified memory size
assuming that the available memory is contiguous.

II. FEATURES OF TBX-TVCOS

In order to make TBX-TVCOS as flexible and useful as possible without
using an excessive amount of memory, all of the non-TBX related features of
the operating system have been replaced by TBX-related features. The release
version of TBX-TVCOS incorporates several features which will be useful to
the user. These features are implimented as operating system options in lieu
of the standard operating system options. The features available under TBX-
TVCOS are displayed on the TV-screen at the end of reading in the TINY BASIC
release cassette and are as follows:

READ BASIC Program
WRITE BASIC Program
Display Commands
Display Error Codes
Continue Programming
TINY BASIC

N WN -

The uses of the TBX-TVCOS features are as follows:

1. READ BASIC Program (from cassette): Causes a program or program part
written in the TINY BASIC language, which was written to a cassette under
option 2 below, to be read from the cassette and made ready for execution
under TBX-TVCOS. CAUTION!! Programs created on and written from systems larger
than the one being read into will read in correctly BUT WILL NOT EXECUTE
PROPERLY. As long as the machine on which a program was created and from which
it was written is EQUAL IN SIZE OR SMALLER THAN THE MACHINE ON WHICH THE PRO-
GRAM IS TO BE RUN, there should be no difficulty in execution.

2. WRITE BASIC Program (to cassette): Causes a copy of the program or
program part written in the TINY BASIC language, which is currently resident
in the machine, to be written to a cassette. Programs or program parts written
to cassette(s) under this option are in the correct format for subsequent
re-entry under option 1 above.

digital group software systems, inc. po box 1086 arvada, colorado 80001

3. Display Commands: Causes an unannotated 1ist of the TINY BASIC verbs/
commands to be displayed on the TV-screen. Return to the operating system is
accomplished by keying the space bar on the keyboard. When option 3 is selected,
the following will appear on the screen:

TINY BASIC COMMANDS

DTA LET

PR GOTO
GOSUB RET
IF IN

LST RUN
NEW SZE
DIM FOR
NXT END

(space)

4. Display Error Codes: Causes an annotated list of TINY BASIC error codes
to be displayed on the TV-screen. The error messages are fairly self-explanatory.
However, they are covered in-depth in the section on TBX-TVCOS errors. Return to
the operating system is accomplished by keying the space bar on the keyboard.

5. Continue Programming: Causes re-entry into TINY BASIC and displays the
contents of the TV-screen as it was when exit was effected. The display is the
only difference between options 5 and 6. Option 5 is particularly useful in the
debugging stage when it can be used as the user goes from TINY BASIC to the
operating system to 1ist the error messages; then uses option 5 to display the
screen as it was before exiting to the operating system.

6. TINY BASIC: Causes entry to TINY BASIC with a cleared TV-screen.

Another feature of TBX-TVCOS is the capability to exit TINY BASIC and enter
the operating system at any time that it is permissable to enter a character by
keying an ESCape (233 octal). Should the user desire to exit TINY BASIC at any
other time, this can be effected by using the reset hardware feature.

At any time the user detects an error prior to keying a Carriage-Return
(215 octal), the error can be corrected or eliminated by one of two procedures:

1. If the error is a single character or small group of characters and it
is detected as soon as it is keyed, it can be deleted by keying one delete
character (377 octal) for EACH character to be deleted (working BACKWARDS across
the Tine), or

2. Should the error to too "messy" to correct by deleting an individual
character or group of characters, it may be better to delete the entire line.
This is accomplished by keying a CTL-L (Control L; 214 octal).

A thorough familiarity with the features of TBX-TVCOS and the TINY BASIC
verb/command set should enable the user to work effectively with the system.

-2 -
digital group software systems, inc. po box 1086 arvada, colorado 80001

III. DIFFERENCES: TBX-TYCOS vs. BASIC

In the interest of operational speed and storage economy it became neces-
sary to impose some restrictions in the design and implementation of TBX-TVCOS.
As a result, programs written in Standard BASIC (in any of its' many forms)
will require some modification and, in some instances, extensive alteration
before they can be executed.

Several of the verbs/commands differ in forms, format, options and
execution from BASIC. For the most part, these differences are not severely
restrictive and, in several instances, represent an improvement over the
original. In any event, almost all of the verb/command differences can be
resolved by imaginative and creative programming. These verb/command dif-
ferences, where they exist, are explained in some detail in the command descrip-
tions section.

The biggest difference between TBX-TVCOS and BASIC is in the definition and
treatment of variables. There are only twenty-six possible simple or dimen-
sioned variables in TBX-TVCOS and they are designated or identified by the
single letters A through Z, whereas most versions of BASIC permit dimensioned
variables to be identified by single letters and simple variables to be
identified by a single letter followed by a single digit. TBX-TVCOS requires
that all array variables, whether one or two dimensioned, have the dimension(s)
of the array be explicitly defined by the use of a DIM verb/command; whereas
most versions of BASIC provide implied dimensions of 1@ for subscripted
variables for which no explicit dimension(s) are provided. In TBX-TVCOS the
only limitation on the dimensions of an array is the amount of available
memory space since each occurance uses two bytes.

Variables in TBX-TVCOS can ONLY be integers with values in the range
+32767 to -32768. When aritmetic is performed on variables it is possible
to exceed these limitations. When the limits are exceeded, no error message
is given and wrap-around occurs (e.g., +32767 +1 = -32768).

IV. VERBS AND COMMANDS OF TBX-TVCOS

TBX-TVCOS supports sixteen verbs and commands; there are four commands
which can only be executed in the immediate mode and twelve verbs/commands
which can be entered either as program statements or immediate execution
comma?ds. A11 input lines MUST be terminated with a Carriage-Return (cr=215
octal).

* k k k k k k k k *k k k % %

The four immediate execution commands are used in the construction,
debugging and execution of programs. These commands are LST, NEW, RUN and
SZE.

1. LST - List Programming. The LST command is used to cause all or
selected parts of a program to be listed on the TV-screen. The LST command has
three possible formats:

A. LST List entire program
B. LST nnnnn List line nnnnn
C. LST sssss,eeeee List lines sssss through eeeee inclusive

(NOTE: Both sssss and eeeee must be existing line numbers).

-3 -
digital group software systems, inc. po box 1086 arvada, colorado 80001

2. NEW - Start new programming. The NEW command is used wheyer it is
desired to begin the entry of a new program from the keyboard. The NEW command
resets all of the internal constants and values of the TBX-TVCOS system and
deletes all programming resident in the system.

3. RUN - Execute (run) resident program. The RUN command is used to cause
the execution of the currently resident program beginning with the statement
with the LOWEST 1ine number. In most cases, when a fully developed program is
read in from a cassette, the only command that is required is the RUN command
once operating systems Options 5 or 6 have been selected.

4, SZE - Display program size. The SZE command is used to cause TINY
BASIC to display the amount of storage required by the currently resident
program. The value displayed by the SZE command will be different once a pro-
gram has been executed because prior to program execution, no space has been
reserved for the variables used in the program. SZE actually displays two
values: The first value is the amount of storage required by the program at
the current moment; the second value is the amount of storage space remaining
and available for use.

* k k Kk k k k k k k k k % %

The remaining twelve verbs/commands are the TINY BASIC instruction set
which is used in TINY BASIC programs. Any of the twelve can be executed in
?he immediate mode by entering or keying the verb/command without a preceeding

ine number.

The format for entering a line of coding for inclusion in a TINY BASIC
program is as follows:

nnnnn (statement)cr

Where: nnnnn is the line number of the statement. TINY BASIC automatically
arranges all of the lines of a program in ascending order.
P¢nnnnn<65535
(statement) is an optional statement in the TINY BASIC language
consisting of one of the twelve verbs/commands followed by its
associated operands.

cr represents a Carriage-Return (215 octal).

Whenever a line is entered which has a 1ine number that is a duplicate
of an exixting line number, one of two things occurs:

1. If the new line contains only a line number immediately followed by a
Carriage-Return, the old line is deleted and the current line is NOT included
in the program. Therefore, all reference to a line with the input Tine number
is deleted from the program; or

2. If the new line contains anything except a line number immediately
followed by a Carriage-Return, it replaces the old line. NOTE: The line-delete
function CTL-L described in the "Features of TBX-TVC0S" Section will NOT cause
a line which is part of the current program to be deleted; it causes the line
which is being input to be deleted before it is accepted by TINY BASIC.

A line can be inserted in a TINY BASIC program between two other lines by
giving it a 1ine number which falls between the 1ine numbers of the other
two Tlines.

-4 -

digital group software systems, inc. p.o. box 1086 arvada, colorado 80001

Each of the twelve verb/commands has a specific format which MUST BE
FOLLOWED EXACTLY. Every attempt has been made to provide examples which
include as many variants of the verb/command as possible. The twelve verb/
commands are DIM, DTA, END, FOR, GOSUB, GOTO, IF, IN, LET, NXT, PR and RET.

1. DIM - Assign array dimension(s): The DIM verb/command is used to
define the dimension(s) of array variable(s). Array variables may have one or
two dimensions. The formats of the DIM statement are as follows:

nnnnn DIM var(dim) One dimension
nnnnn DIM var(diml,dimz) Two dimensions

Where: nnnnn = Line number
var = One of the letters of the alphabet

dim Number of elements in the array
dim1 = First dimension of two dimensional array (matrix)
dim2 = Second dimension of two dimensional array (matrix)

d1‘m/d1‘m1/d1‘m2 may be a numeric literal or an expression

Examples of DIM:

50 DIM X(30) One dimension
100 DIM Y(15,27) Two dimensions
150 DIM Z(12,Q+Z) Expression used in dimension statement
200 DIM A(10%5B(20,5),C(30) Multiple array dimensions assigned by

one DIM statement

2. DTA - Assign value(s) to simple or single dimensioned array variable.

The DTA statement is analogous to a combination of both the DATA and READ state-
ments in Standard BASIC. It functions differently than either of the standard
statements but does provide the capability of easily assigning literal values

to multiple variables in one statement.

The format of the DTA statement is as follows:
nnnnn DTA var=literal

In its' simplest form, the DTA statement is equivalent to a LET statement.
For example:

50 DTA X=3 is the same as
50 LET X=3 .

However, the DTA statement permits multiple assignment of literals to
variables. As many var=literal sets as can be accomodated on a single 72
character line may follow the DTA verb/command provided that they are separated
by semi-colons (;)s. For example:

100 DTA X=3;Y=4;Z=7;A=4. .

In addition, the DTA statement can be used to assign a string of values
to consecutive elements of an array beginning with some pre-specified element
through the last element of the array or until all of the literals in the
literal string have been used.

-5 -
digital group software systems, inc. po box 1086 arvada, colorado 80001

For example:

100 DIM B(10)
200 DTA B(1)=10,9,8,7,6,5,4,3,2,1

This will assign consecutive elements of the literal string to consecutive
elements of the array B such that B(1) = 10, B(2) = 9 etc.

If the DTA statement had the following form of:

200 DTA B(3)=10,9,8,7,6,5,4,3,2,1 then B(3) = 10, B(4) = 9,
B(5) = 8 etc., and the values of B(1) and B(2) would be undefined relative to
the effects of the DTA statement. The subscripted variable can be subscripted
by another variable and take the form of:

200 DTA B(X)=10,9,8,7,6,5,4,3,2,1. and the value of X at the time that
the DTA statement is executed will determine which elements of the array B
will be assigned which values from the literal string.

3. END - End of Program. The END statement is normally the LAST statement
to be executed in a BASIC program. Its function is to terminate execution
of the program and return control to the user. While the END statement need
not be the last instruction in sequence by line number, it is a good practice
to make it so. The format of the END statement is:

nnnnn END
For example:

9999 END

4. FOR - Beginning of a loop. The FOR verb/command is used to initiate
and control the execution of a program loop. It is used to assign the initial
and the terminal values for the loop control variable. In Standard BASIC,
it is also possible to specify the value of the increment to be applied to
the Toop control variable; whereas in TINY BASIC the STEP or increment for the
loop control variable is fixed and has a value of 1. The format of the FOR
statement is as follows:

nnnnn For var=expression-1 TO expression-2
Where: nnnnn is the statement 1ine number
var is the loop control variable and can be any valid variable
whether simple of subscripted

expression-1 is any valid expression which can be resolved to a
starting value for the loop control variable and is less in
value than expression-2

expression-2 is any valid expression which can be resolved to a

terminal value for the loop control variable and is greater in
value than expression-1

-6 -

digital group software systems, inc. po box 1086 arvada, colorado 80001

expression -1/-2 can be a numeric literal, any valid variable or
an arithmetic expression consisting of a number of numeric
literals and/or valid variables connected by the arithmetic
operators (+,-,*,/); the arithmetic expression may be as complex
as necessary utilizing parentheses as required to insure clarity
and eliminate ambiguities.

The FOR statement is used in conjunction with the NXT statement to control
the loop. Typical examples of a FOR-NXT loop are as follows:

200 FOR Q=1 TO 18 R
- (100p) Control variable used as a counter to
--- (instructions) > control number of iterations of the Toop.
300 KT € |
500 FOR I=2 TO 23)
::: Control variable used as a combination
LET A(I)=p > counter and subscript
650 NXT I D
1010 FOR Z=(((1p*Y)+(6*Q))/M+7 TO (((15*Y)-(4*Q))*N)-26,
—_ ~ ~-

——— Complex expressions used as starting and
_— terminal values of the loop control variable

1216 NXT Z

The starting and terminal values of the loop control variable are computed
and fixed when the loop is begun. Therefore, altering the values of any
variables which are used to compute them while within the loop will not effect
the values of the starting and terminal values. Caution must be exercised
when permanently exiting a Toop by means other than falling through the NXT
statement because a loop is still in effect until the terminal condition is
satisfied and a loop terminating NXT statement is exercised (see "Programming
Techniques" Section).

5. GOTO- Alter program execution sequence:/-Jumping to a line other than
the next one in sequence. The GOTO verb/command is used to control the sequence
of execution in a program. The format of the GOTO statement is as follows:

nnnnn GOTO expression
Where: nnnnn is the statement line number

expression is any valid expression which can be resolved into a
number which is equal to an existing Tine number in the currently
resident program.

NOTE: The GOTO statement of TINY BASIC differs from the GOTO statement of
Standard BASIC in that the destination line number can be expressed in the form
of an expression which gives the capability of generating computed GOTO's;
Standard BASIC requires that the destination be expressed as a numeric literal
1ine number. The following are examples of the GOTO statement:

-7 -
digital group software systems, inc. po box 1086 arvada, colorado 80001

270 GQTO 490 Explicit destination 1ine number
540 GOTO X Destination 1ine number equal to value of X
1327 GOTO ((z*Y)+3)/Q Computed 1ine number equal to value of expression
6. GOSUB - Jump to subroutine and save address of next sequential line
number for return using the RET statement. The GOSUB verb/command is used to
cause TINY BASIC to alter the sequence of program execution by jumping to the
statement whose 1ine number follows the word GOSUB and to begin sequential
execution at that point and to continue from there until a RET statement is

encountered whereupon sequential execution resumes at the statement immediately
following the GOSUB statement. The format of the GOSUB statement is as follows:

nnnnn GOSUB expression
Nheke: nnnnn is the statement 1ine number
expression is any valid expression which can be resolved into a
number which is equal to an existing line number in the currently
resident program (see NOTE in GOTO statement description).
Examples of the GOSUB statement are as follows:
135 GOSUB 1540 Explicit destination 1ine number
1645 GOSUB Y Destination 1ine number equal to value of Y
26455 GOSUB ((P+Q)*R)-S/T Computed line number equal to value of expression
7. IF - Conditional Statement. The IF statement is used to test to

determine whether or not a given condition exists. The format of the IF statement
is:

nnnnn IF expression-1 condition expression-2 imperative-statement
Where: nnnnn is the 1ine number of the statement
expression-1 is any valid expression
expression-2 is any valid expression
condition is one of the following relational operators:
= EQUAL
{ LESS THAN
?> GREATER THAN
=< EQUAL OR LESS THAN
=> EQUAL OR GREATER THAN
<> NOT EQUAL (LESS THAN or GREATER THAN)
imperative-statement is any valid TINY BASIC statement, including

another IF statement which is to be executed if the reguired
condition is true.

-8 -

digital group software systems, inc. po box 1086 arvada, colorado 80001

Should the required condition be false, the imperative-statement will not
be executed and control will be passed to the statement immediately following
the IF statement in sequence. Many versions of Standard BASIC require that
the imperative-statement be an implied or explicit GOTO. TINY BASIC permits
the imperative-statement to be any valid TINY BASIC statement. Should the
imperative-statement be another IF statement, there exists an implied AND
between the two (or more) IF statements and both must be true if the final
imperative-statement is to be executed; if either (or any) is false, the
imp$r?%ive-statement will not be executed. Examples of the IF statement are
as follows:

260 IF A=B GOTO 460
555 IF (C+D)*X»Y LET Z=1
1378 IF A>B IF C«>D IF E=F GOSUB 1582
8. IN - Enter (input) a value from the keyboard. The IN verb/command

causes TINY BASIC to display a "?" on the TV-screen requesting the user to
enter a value. The format of the IN statement is as follows:

nnnnn IN vary ,var,....,var,

Where: nnnnn is the statement 1ine-number

varl-varn are a series of one or more variables which are to be
assigned values equal to the values entered.

If more than one variable is specified in the IN statement, the values
are entered one at a time with a Carriage-Return required between each value
entered. Standard BASIC usually permits multiple inputs to be separated by
commas (,)s. This is NOT permitted by TINY BASIC. Examples of the IN state-
ment are as follows:

390 IN A Enter single value
922 IN X,Y(3),Z(15,4) Enter multiple values

NOTE: If the variableson a multiple variable IN statement are separated
by semi-colons, they can all be entered as one line even though each is
terminated by a Carriage-Return.

9. LET - Assign a value to a variable. The LET verb/command is the
workhorse of BASIC. The LET statement causes TINY BASIC to assign a value to
a variable. In some versions of BASIC, the word LET can be omitted from the
LET statement. However, TINY BASIC requires that the word LET be present.
The format of the LET statement is as follows:

nnnnn LET var=expression
Where: nnnnn is the statement 1ine number

var is the simple or subscripted variable to which a value is
being assigned

expression is any valid expression in TINY BASIC

-9 -
digital group software systems, inc. po box 1086 arvada, colorado 80001

Examples of the LET statement:

227 LET A=1 Assign numeric literal

495 LET X(4)=B(7,9) Assign value of another variable
1111 LET Z(Y)=(((100*A)+73)/M*2)

10. NXT - End of loop. The NXT statement is used to terminate the sequence of
jnstructions that make up a loop. The function of the NXT command is to cause
the loop control variable to be incremented and tested against the terminal
condition specified in the logically preceeding FOR statement. If the terminal
condition is not satisfied, control is transfered to the statement immediately
FOLLOWING the FOR statement; if the terminal condition is satisfied, control is
transfered to the statement following the NXT statement. The format of the
NXT statement is as follows:

nnnnn NXT var
Where: nnnnn is the statement 1line number
var is the loop control variable
A typical NXT statement would appear as follows:
419 NXT X
11. PR - Print output data. The PR verb/command is used to cause TINY BASIC
to print the data specified in the PR statement. As many print-items can be
output by a single PR statement as can be accomodated on a 72 character com-

mand line. The print-items in a single print statement may be separated by
either commas (,gs or semi-colons (;)s.

The PR statement was designed, initially, to be used with a teletype
machine and, therefore, an output line is assumed to be 75 characters long.
When print-items are separated by commas, the print-line is assumed to be
divided into five 15 character fields; each print-item is left justified in
the next sequential print field. When print-items are separated by semi-colons
a single space is inserted between the print-items as they are printed.

Because the width of the TV-screen is 32 characters, the use of a comma
as a print-item separator when columnar alignment is required presents some
difficulties when more than two print-items are to be output by a PR statement.
The reason for this is that the first two characters of the third field are on
one line and the balance are on the following line.

A PR statement can be terminated in any of three ways. The first method
of termination is to immediately follow the last print-item with the statement
terminating Carriage-Return; this will cause the TV-screen scroll to be rolled
up one line. The second method of termination is to follow the last print-item
with a comma and then a Carriage-Return; this will cause the TINY BASIC print
control routines to advance the print field pointer to be aligned to the next
15 character print-field but not cause a teletype Carr-Ret to be emitted (the
TV-screen scroll will not necessarily be advanced one line). The third method

- 10 -

digital group software systems, inc. po box 1086 arvada, colorado 80001

is to follow the last print-item with a semi-colon followed by a Carriage-

Return; this will cause a single space to be emitted and suppress emission

of a teletype Carriage-Return (the TV-screen scroll will not necessarily be
advanced one 1line].

The format of a PR statement is as follows:
nnnnn PR [print-itenﬂ[separator print-item...) [separator]gl
Where: nnnnn is the statement 1line number
print-item is an item to be printed; this can be a variable, an
expression, a numeric-literal or a character literal. (A
character literal is a string of characters which is preceeded
and followed by a double-quote; e. g., "CHARACTER LITERAL").
separator is a comma or a semi-colon.
A PR statement does not require that any print-items or separators follow
PR. A PR statement consisting of only a PR followed by a Carriage-Return
will cause the current output line (even if it is empty) to be terminated by
emitting a Carriage-Return.
The PR statement is probably the most useful of the verb/commands which
can be executed immediately. This form of the PR statement causes TINY BASIC

to act like a calculator if the print-item(s) are expressions. An example
of the PR statement used in the immediate execution mode might be as follows:

PR (((3*5)+(21/7))*(42+117)) &

would cause 2862 to be printed on the next line.

Examples of the PR statement as part of a program are as follows:
180 PR X Print the value of X

250 PR "THE VALUE OF X IS";X Print the character-literal followed by
the value of X

540 PR A,B,C Print the values of the variables A, B,
and C aligned on print-field boundaries

The PR statement incorporates, for its exclusive use, one of the two
functions available under TINY BASIC. This is the tab TB function. The
format of the TB function as as follows:

TB(expression)
The expression in the parentheses following TB is evaluated and a number

of spaces equal to the value of the expression (up to 255) is printed out. An
expression which has a value of zero will emit 256 spaces and in TBX-TVCOS will

- 11 -

digital group software systems, inc. po box 1086 arvada, colorado 80001

clear half of the TV-screen. The TB function can replace any print-item in
a PR statement.

12. RET - Return from subroutine. The RET verb/command is used to terminate
a subroutine. It causes program execution sequence to be returned to the
st;tement following the GOSUB statement which initiated execution of the
sub-routine. »

* k k k k k *k k k * k k * %

GKWJ There is one general function available under TBX-TVCOS. This is the
function which generates a random number. The random number function is
involked by inserting the letters RN wherever a variable might normally
occur in an expression. Whenever RN is encountered, the random number generator
generates a number in the range P<{=RN{=10000.

V. PROGRAMMING TECHNIQUES

One of the best ways to begin learning how to program a computer in any
specific language is to formulate a problem which can be solved by using the
language. Think the problem through and write it down in normal English as
specifically detailed as possible. After having done this, study the language
and try to imagine how each of the verbs/commands could be used to solve a
portion of the problem. Build your programs in sections with each section
written to solve a specific part of the problem. Then link the sections
together appropriately to create the program.

The program listed below is a fairly typical example of a simple program
written to solve a simple problem. The program plays the number game TRAP.
The object is to discover the value of an unknown number by trying to trap
it between two known numbers. The program provides clues as to the relation-
ship of the unknown number to the numbers guessed by the player.

As many variations as possible of the verbs/commands of TINY BASIC were
used in constructing this program; some of them unnecessarily. Study of the
program will reveal that the subroutine at line 8p@p could be inserted in
place of the GOSUB and eliminate the RET. However, that would not have
illustrated an example of a subroutine. Novmally, subroutines are not coded
separately unless they are executed from several places in the program by
GOSUBs and where including the subroutine instruction in-Tine would lengthen
the program.

Several lines in the program have more than one statement in them. The
statements are separated by the $ character. A special feature of TINY BASIC
permits multiple statement on one line provided they are separated by $'s. The
use of this feature can be very handy when a program has grown too big for
the available memory. To reduce the size of the program, examine it to
find statements which can be combined on one line; every line which is eliminated
by this method will save 3 bytes of memory.

Another memory saving technique is to eliminate all of the spaces in a
program which are not part of character-literals in PR statements. The spaces

- 12 -

digital group software systems, inc. po box 1086 arvada, colorado 80001

have no value to TINY BASIC except to make the program more readable.

* Kk k * k k k¥ * ¥ ¥ * * * %

Loops are one of the most common structures in programs. However, every
now and again it is desirable to permanently exit a loop at a point other
than the normal exit point. At the point where the exit is to be effected,
insert coding similary to the following to avoid the problems caused by not
clearing the loop in the normal manner:

For X=1 TO 17

Other --9 IF Z(X)=p LET X=17$NXT X$ GOTO nnnnn
exit -—-

Normal--$ NXT X
exit

In situations where it is desired to have the increment of the loop control
variable be other than 1 you can use combinations of other statements to
accomplish the same effect as a FOR-NXT.

For example, you wish the starting value to be 27 and you wish the terminal
value to be P (steping backwards) and you wish the increment to be -3. . You
could use the following coding to accomplish this:

100 LET V=27
110 ---

175 IF V)@ LET V=V-3$ GOTO 119

** SAMPLE TINY BA?IC PROGRAM **

o%

1

19P DIM X(2) Array variable X has two elements

119 LET T=p Set variable T to zero

129 LET R=RN/19 Set variable R to a value @(=R¢{=1pp0
139 PR TB(@)$PR TB(P) Print 256 spaces twice to clear screen
149 PR "OK I HAVE A NUMBER" Print start message

1508 PR Print a blank line

160 PR "ENTER FIRST NUMBER"; Print entry message inhibit carr-return
179 IN X(1) Input variable X(1) from keyboard

189 PR "ENTER SECOND NUMBER"; Print entry message inhibit carr-return

199 IN X(2) Input variable X(2) from keyboard

209 LET T=T+1 Add 1 to variable T used to count tries
219 GOSUB 8fpp Go to subroutine which tests inputs

. 22p IF Z=1 GOTO 25 If variable Z equals zero go to line 25

230 PR "GUESS AGAIN" Print message with carriage-return

249 GOTO 15@ Go to line 15¢ for next instruction

250 PR "YOU GUESSED IT IN";T;"TRIES" Print complex message with 3 print-items
260 PR"AGAIN? Y=1, N=g"; Print entry message inhibit carr-return
279 IN A Input variable A from keyboard

280 IF A=p GOTO 9999 If input value equal zero go to 9999
299 GOTO 11p Otherwise go to Tine 11f

- 13 -

the digital group software systems, inc. po box 1086 arvada, colorado 80001

0 4 8
1

* TEST INPUTS SUBROUTINE

8PP LET Z=p Set variable Z to zero indicating no-hit
8199 FOR Y=1 TO 2 Set loop control variable Y to a
starting value of 1
with a terminal value of 2
)s Print the Yth element of array X no c-r
)XXR PR "{NUMBER" $GOTO 88@# If the Yth element of array X is
less than variable R
print character-literal NUMBER
then go to line 87¢9
84@p IF X(Y)>R PR ")NUMBER" $GOTO 88pP See line 83@@ test is greater than

82¢9 PR X(Y
8309 IF X(Y

* NOTE: If tests in Tines 830@ and 84@@ fail execution falls through to here

* and X(Y) must be equal to the generated number

85¢9 LET Z=1 Set Z to 1 indicating a hit

86@¢¢ PR "="; Print character-literal = no carr-return
8709 PR R Print the generated number

88p% NXT Y Increment control variable Y test

against terminal value if not

greater than go to line 82#p

else fall through to next line
89p0p RET Return to Tine following GOSUB line 22§
9999 END End of program return to entry mode

* k k k k k k¥ k¥ k¥ k¥ * * % %

IV. TBX-TVCOS ERROR MESSAGES

The form of error messages in TBX-TVCOS is as follows:
ERR ee nnnnn
Where: ee is the error number
nnnnn is the number of the line on which the error occurred.

There are 15 known error messages generated by TINY BASIC. They are
listed below along with some suggested actions to take to fix the problem.

1. Input Tine too long (72 maximum)
Fix: Break input 1ine into two or more lines and re-enter them.

2. Input numeric overflow. Number out of range +32767=)number =)-32768
Fix: Re-enter a number in the correct range.

3. I1legal character
Fix: Re-enter the line in error.

4. No ending quote
Fix: Re-enter the line in error with an ending quote.

5. Arithmetic too complex
Fix: Rearrange the expression and, if required, break it into several

parts and re-enter.
- 14 -
digital group software systems, inc. po box 1086 arvada, colorado 80001

6. Illegal Arithmetic
Fix: Re-enter with correct arithmetic.

7. Label not found
Fix: Check program and either enter a line with the required label or
fix the 1ine which references the non-existant label.

8. Dijvision by zero
Fix: Check arithmetic and re-enter the error line or test for zero before
dividing and jump around the divide if division=0.

9. Subroutines nested too deep
Fix: Rearrange program logic to use fewer nested subroutines. Maximum
nesting is 8.

10. RET with no GOSUB
Fix: Determine how the program got to the RET without having executed a

GOSUB and fix logic.

11. Illegal Variable. Probably a subscripted variable with no DIM.
Fix: Examine error statement and correct as required.

12. Unrecognizable statement
Fix: Examine the statement and replace it with a Tegal statement.

13. Parentheses error. The quantity of left parens MUST be equal to the
quantity of right parens.
Fix: Examine the statement and re-enter with corrections.

14. Out of memory. Program too big.
Fix: See "Programming Techniques" Section on how to reduce program size.

15. DIM too large. Variable storage exceeds available memory.
Fix: See "Programming Techniques" Section on how to reduce program size.
Remember each occurance of a dimensioned variable takes 2 bytes.

15 -

digital group software systems, inc. po box 1086 arvada, colorado 80001

TINY BASIC -- BAUDOT

INTRODUCTION

TINY BASIC Extended of The Digital Group Software Systems, Inc. (DGSS) has
been modified slightly to utilize a very low cost 5 level (Baudot) teletype machine
for hardcopy. The hardcopy may be either a program 1isting for program maintenance
or may show the actual program execution. Two non-interchangable versions are
presently available; one for use with The Digital Group, Inc. (DGI) 8080 system
and another for use on DGI Z-80 systems. Each system consists of the 1100 Baud
audio cassette input, a 32 by 16 row standard TV cassette output, 10K or
greater storage, and a 5 level (Baudot) hardcopy machine running at 60 WPM.

CONNECTIONS

The Baudot machine is driven through the LSB of Port 2 output. This is
pin W of the 36 pin connector of the I/0 board located between the CPU board and
the TVC board. Since these hardcopy machines are typically driven by a high
voltage loop supply, some means of interface between this loop and the output
ports TTL level must be utilized. Several schemes have been used and yield
similar results. The simple high voltage transistor scheme shown below certainly
represents a Jow cost method:

Optional:
Loop current
test meter

(100}t
\e/

g —%

IN2071
ES; or equivalent

60 WPM

Print%r Baudot
magnets

Machine

To Output
Port 2 600 piv diode
LSB
(pin W) +
MJE 340 or
equivalent i Loop
HV XSTR — Supply
Procéssor
Ground
-1 -

digital group software systems, inc. p.o. box 1086 arvada, colorado 80001

INTERFACE THEORY OF OPERATION

The TTL to loop interface shown on the preceding page is simply an electronic
open/closed switch to the 60 WPM Baudot machine.

The output ports voltage causes the emitter-collector connection to be
"closed" when the TTL input is high (=+3 volts) and "open" when the TTL
input 1is low (= 0 volts). The diode prevents reverse voltage spikes from
destroying the transistor or noise problems in the processor. The loop voltage
is generally in the range of 100 - 150 volts and the loop current is adjusted
to be around 60ma. Several excellent books are available which explain the
basics about. these machines and the loop supplies. Two books are as follows:

1. RTTY HANDBOOK published by TAB, Edited by Wayne Green; and

2. NEW RTTY HANDBOOK published by Cowan, Edited by Byron Kretzman.

These books are generally available at most "Ham Radio" supply stores.

The loop supply must be transformer isolated from the incoming 110 volts
household AC.

TESTING THE CONNECTION

After assembling this little interface, connect it to the processor, machine,
and Toop supply with correct polarities and with all voltages off. Be very certain
that the ground return on the processor is connected. Turn on the Toop supplies
and the machine. The machine should "run open". If not, the line to the diode/
xstr is probably reversed and the diode is forward biased and closes the loop.
Removing the I/0 board (and others for convenience) should permit placing a
temporary +5 volts on the output port without trouble. Turn on the processor
supply and bring a +5 volt lead in series with another = 220 ohm resistor over
to the output port side of the infacing 220 ohm resistor. The printer should
latch up (quiet down) when the voltage to the xstr's input is applied and run
open (noisy) when the xstr's input voltage source is removed. If all tests OK,
turn off everything and reassemble the processor. Be sure the interface input
goes to Output Port 2, LSB. Remove any I/0 devices and interfaces also connected
to I/0 Port 2 to avoid undesired commands to these devices.

LOADING TBX-Baudot

TBX-Baudot runs almost identical to the original DGSS TBX-TVCOS, so load
the cassette exactly as if running TBX. When the Op Sys is displayed, you will
notice that Options 4 and 5 are missing since the Baudot routines are located
in the storage area formerly occupied by the Error Code listings. A "modified
for hardcopy" BIORYTHM program is automatically loaded at the same time as the
TBX-Baudot system. Typing LST should result in a hardcopy and a TV image of the
programming in BIORYTHM. Typing RUN will result in a BIORYTHM listing for
wives, neighbors, and friends but you run the risk of losing the use of your
processor for a considerable amount of time!!

-2 -

digital group software systems, inc. p.o. box 1086 arvada, colorado 80001

USING TBX-Baudot

TBX-Baudot can be interchangeably used for 1listing of running programs
built under either TBX or TBX-Baudot on either 8080 or Z-80 systems. Since
the output speed of the system is limited by the 60 WPM Baudot machine, it is
generally preferable to build the program under TBX, make a cassette of the
program, bring up TBX-Baudot, 1oad in the program cassette, and list/correct.
Refer to the TBX documentation for all the commands/error codes of TBX-Baudot
(they are identical). Programs built under TBX-8080 will run on TBX-Z-80 and
vice versa. However, TBX-80 itself will not---repeat not---work on a DGI
Z-80 system nor vice versa. You will notice that the Z-80 TBX runs faster so
programming loops will have to be reset. Also, some TBX programs may not have
correct Carriage Return/Line Feed operation when running on the Baudot machine.
Generally, simply reprogramming to add Carriage Return instead of "Video Wrap
Around" will solve the problem.

FINE POINTS

Unfortunately, the Baudot code (= 64 characters possible) does not have
all of the characters that the ASCII set has (256 characters possible). For
this reason, several character substitutions have been used (such as (for <
and ! for *, etc.). After a little practice, the users have found this to be
no great problem. :

Different character set options have been used on these older machines
and, if possible, request one using "Standard Ham RTTY Character Set". Some
companies (advertised in Ham magazines) offer character set conversions if
required.

@ften readjusting the machines' "Range" control and setting to the midpoint
between faulty printing can improve the error rejection capabilities of the
machine.

DGSS and DGI have been using an earlier version of this TBX-Baudot for
several months and the ability to have low cost hardcopy has been greatly
appreciated. "Even if it ain't fast, you have to admit it gets the job done
cheap".

-3 -
digital group software systems, inc. p.o. box 1086 arvada, colorado 80001

TBX Schematic ONLY
ASCII

ASCII

The ASCII machine is driven through the LSB of Port 2 output. This is pin W

of the 36 pin connector of the I/0O board located between the CPU board and the
TVC board. The Teletype model 33 machine may be simply interfaced by using

the following circuit. A few extra lines and parts are used to enable data entry
from the model 33 if appropriate software were written to sample and deserialized
the incoming data.

Purple >
20ma. e9 |.
o8 Il mfd
I 100
e7 Data from v 5 Y
to TTY &= Port 2
(White-Blue) | & 6 — o2 LSB Out
1
(Brown-Yello b o5 ‘ g +5
or
Equivalent -t 2200
Full Duplex e 4 Data from 1 mfa]
Connection TTY to CPU - Port 2
o3 LSB In

4700
o2 ____/\/\7\/_____’ -12
ll0vac ¢
L 61

(Line Terminal Strip (located at Right Rear of a TTY 33)

Digital Group System Interface to TTY 33 20ma loop

The Teletype 33 should be set up for Full Duplex operation with a 20ma. loop
as per the manuals or the included circuit of the color coded leads.

digital group software systems inc.
po box 1086, arvada, colorado 80001

