- (tedgralgrowp)

po box 6528 denver, colorado 80206 (303) 777-7133

—

MAXI-BASIC
Version 2.0

296-021-B-16

(e dightalgrovp)

po box 6528 denver, colorado 80206 (303) 777-7133

Maxi-Basic
Version 2.0

First Edition - April 1978

©Copyright 1978 The Digital Group, Inc.

e

MAXI-BASIC — Version 2
INTRODUCTION

This manual describes MAXI-BASIC, an extended BASIC
with such features as multiple-dimensioned arrays, strings,
formatted output, and machine language subroutine
.capability, with plain english diagnostics.

MAXI-BASIC Version 2 has been created by adding anaudio
cassette data file capability to MAXI-BASIC Version 1.1. For
the PHIMON user, PHIMAX (MAXI-BASIC Version 2 for
PHIMON) offers program LOAD and SAVE from Phidecks as
well as complete data file capability under PHIMON.

The user of MAXI-BASIC is assumed to be familiar with some
version of BASIC. The purpose of this manual is not to teach
BASIC but rather to define commands, statements and
operating procedures of MAXI-BASIC.

AUDIO VERSION

This version is similar to Maxi 1.1 except for the following
changes:

1)
2)

Scrolling buffer moved to top 4 pages of memory.
Audio data file routines on pages 12-14.

PHIMON VERSION (PHIMAX)

This version is based on Maxi 1.1, but numerous changes
have been made to create a custom PHIMON Version:

1) Scrolling buffer is on pages 1-4.

2) Improved scroller.
3) PHIMON data file routines on pages 12-15.
4) PHIMON and audio cassette program LOAD and

SAVE.

The starting address of PHIMAX is 5000 (octal) fora TVC-64
and 5004 (octal) for a TVC-32.

PRINTER

The printer handler is on pages 6 (octal) - 10 {octal) with
6000 (octal) being the initialize address and 6030 (octal)
being the character print routine. To turn on the printer in
BASIC press "CTRL P"” on the keyboard. "CTRL O" turns off
the printer. To turn on the printer in a BASIC program printa
CHRS$ (144) and a CHR$ (143) to turn it off.

SYSTEM SIZE

MAXI-BASIC and operating system reside in the first 64
pages of memory (13K). Therefore, the minimum system
memory size should be 18K. MAXI-BASIC automatically
searches for top of memory and adjusts itself for any size of
continuous memory.

INPUTTING A PROGRAM

Every program line begins with a line number. Any line of text
typed to MAXI-BASIC in command mode that begins with a
digit is processed by the editor. There are four possible
actions which may occur:

A new line is added to the program. This occurs if the line
number is legal (range is @ thru 66535) and at least one
character follows the line number in the line.

An existing line is modified. This occurs if the line
number matches the line number of an existing line in
the program. That line is modified to have the text of the
newly typed in line.

An existing line is deleted. This occurs if the typed-in
line contains only a line number which matches an
existing line in the program.

An error is generated. If the line number is out of range,
or the line is too long, or the memory would become full,
then an error message is generated and no other action
is taken by MAXI-BASIC.

BLANKS

Blanks preceding a line number are ignored. The first non-
digit in a line terminates the line number (even blanks).
Multiple blanks are permitted anywhere in a line for
indentation purposes, but not within reserved words or
constants.

MULTIPLE PROGRAM STATEMENTS

Multiple program statements may appear on a single line, if
separated by a (:) colon. A line number must appear only at
the beginning of the first statement on the line.

NOTE: The colon (:) must be preceded by a space for correct
operation.

TYPING MISTAKES

If a typing mistake occurs during the entering of any line of
text to MAXI-BASIC, there are two possible corrective
actions available:

When the user types an (@) at-sign character, MAXI-
BASIC completely ignores all input on the current line
being typed in, and types a carriage return. The correct
line may then be typed to MAXI-BASIC.

When the user types a left-arrow (under-line or
RUBOUT on some keyboards), MAXI-BASIC will
backspace to the previously typed character.

COMPATIBILITY

Certain characters, when they appear in programs, are
automatically translated into other characters. This is done
to minimize the effort of converting programs written for
other BASIC systems. In particular, left bracket ([), and right
bracket (]), are converted to left parenthesis, and right
parenthesis respectively. This conversion is not done within
guoted strings in a program.

COMMANDS

RUN/[optional line number]
Begin program execution either at the first line of the
program or else at the optionally supplied line number.

LIST[optional line number],{optional second line number]
If no arguments are supplied, then print the entire
existing program. If one line number is supplied, then
print the specified line number. If two line numbers are
supplied, then print the program in the region between
the two line numbers. If one line number and a comma
are typed with no second line number, then print the
program from the specified line number to the end.

SCR
Delete (scratch) the existing program and data, in
preparation for entering a new program.

REN|[optional beginning value],[optional increment value]
Renumber the entire existing program. If the first
argument is not supplied, then 1@ is used as the initial
statement renumber value. If the second argument is not
supplied, then 10 is used as the increment value.

CLEAR
Clear all variables. This command deletes all arrays,
strings and functions, and initializes all scalar variables
to zero.

CONT
This command causes execution of a running BASIC
program to continue after a STOP statement or after a
CTRL-C stop.

LINE[number of characters]
This command defines the line length of the user
terminal. No input line will be accepted longer than the
specified value, and no output line will be printed longer
than the specified value. The maximum value is 132. The
initial value is 72.

SAVE
This command is used to save a program onto a
cassette. See saving and loading programs.

LOAD
This command is used to load a program from cassette
to memory. See saving and loading programs.

CONSTANTS

Magnitude range: .1E-63 thru .99999999+63

Constants appearring in programs are rounded to 8
digits if necessary. Internal representation of numbers is
binary-coded-decimal.

NAMES

All user defined names are one or two characters long: a
letter of the alphabet optionally followed by any digit. For
example: A, Z@, and Q9 are legal names. The same name may
be used to identify different values, as long as the values they
identify are of different types. For example, it is possible to
have a scalar variable named A1, an array named A1, astring
named A1$ and functions named FNA1 and FNA1$. There is
no relationship between these entities.

OPERATORS

Numeric: +, -, /. % N (orAon some keyboards)

-2-

Relational: =, € > <€> »= =>» &= =<
A relational operation gives a 1 (true) or @ (false) result.

Boolean: AND, OR, NOT
A Boolean operand is true if non-zero, and false if zero.
The result of a boolean operation is 1 or @.

STATEMENTS

Only some statements listed below are accompanied by
discussion. Consult the example programs in Appendix 1 for
questions about the use of a particular type of statement.

LET
The LET is optional in assignment statements. Multiple
assignments are not allowed. The statement A=B=0
assigns true or false to A depending on whether ornotB
equals 0.
100 LET A=A+1: B(J)=B(J-1)

IF, THEN, ELSE
An IF statement may optionally have an ELSE clause. A
THEN or ELSE clause may be a LET statement, a
RETURN statement, another IF statement or a GOTO,
for example. If either the THEN clause or the ELSE
clause is a simple GOTO, then the GOTO reserved word
may be optionally omitted.
100 IF A=B THEN 150 ELSE A=A-1

FOR, NEXT
FOR loops may be multiply nested. The optional STEP
value may be positive or negative. Itis possible to specify
values such that the FOR loop will execute zero times.
For example: ‘
100 FOR J=51to 4 : PRINT J : NEXT

A NEXT statement may optionally specify the control
variable for the matching FOR statement, as a check for
proper nesting.

GOTO
The GOTO statement
designated line number.
160 GOTO 710

is a direct branch to the

ON
The ON statement provides a multi-branched GOTO
capability. For example:
100 ON J GOTO 500, 600, 760
will branch to 500, 600 or 700 depending on the
value of J being 1, 2, or 3 respectively.
EXIT
The EXIT statement is identical to a GOTO except that it
has the effect of terminating any active FOR loops and
reclaiming the associated internal stack memory. It
should be used for branching out of a FOR loop.
100 IF A (J)=100 THEN EXIT 320
STOP

The STOP statement halts execution of the program and

displays the message "STOP IN LINE XXX". After a

STOP has been encountered, the program can be

continued starting at the next line by typing CONT.
100 STOP

END
The END statement also halts the execution of the
program. However, unlike STOP, there is no way to
continue from an END statement. If the END statement
is the last line number of the program, it may be
optionally omitted.
100 END

REM
The REM statement is used to annotate the program.
Any REM statement is ignored by the MAXI-BASIC
interpreter.
100 REM THIS PROGRAM CALCULATES PI

READ, DATA
The READ and DATA statements allow the user to input
pre-determined data into a program. The READ
statement transfers data named in the DATA statement
into the variables or arrays which have been named by
the READ statement. -
' 1008 DATA 12.17, "VOLTS", 2.4E09, "OHMS"
110 READ V, V$, O, 0%

RESTORE
The RESTORE statement may optionally include a line
number, specifying where the READ pointer is to be
restored to. In the absence of the optional line number,
the READ pointer is set to the first line of the program.
160 RESTORE 75

INPUT

INPUT1
The INPUT or INPUT1 statement may optionaily specify
a literal string which is typed on the terminal as a prompt
for the input instead of a question mark. To inhibit the
echoing of the carriage return at the end of user input,
use the INPUT1 statement.

100 INPUT "TYPE VALUE: "V

GOSUB, RETURN

The GOSUB statement branches the program to a
subroutine with the starting line number specifiedin the
GOSUB statement. The RETURN statement is the last
line of the subroutine, and branches the program to the
line following the GOSUB statement

100 GOSUB 1300

135¢ RETURN

PRINT

The PRINT statement may include a list of expressions,
variables, or constants separated by commas (,), or
semicolons (;). Note that if the list of variables is
terminated by a comma, or semicolons then a carriage
return is not typed. A comma separator will output five
spaces between variables. A semicolon separator will
output no spaces between variables. The PRINT "
statement will cause a carriage return to be printed. Al
values are printed in free format, unless formatting is
specified. If a value will not fit on the current outputline,
then it is printed on the next output line. Advancement of
the printer to a specified output position may be
accomplished with the TAB function. Formatting may be
accomplished by including a “"format string” in a print
statement (see below). A # sign is interpreted as the
word PRINT.

100 PRINT "PT="; P: PRINT"": PRINTD, 17.5,E

FILL
This statement permits filling a specified byte in the
computer memory with a given expression value. For
example, FILL 108, J+3 will fill memory byte 160 with
J+3.
100 FILL 100, J+3

ouT
This instruction permits doing an 8086 or Z-80 OUT
instruction. For example, OUT 5, 3will performan OUT 5
instruction with 3 in the 8880 or Z-8@ accumulator.
106 OUT 5,3

DATA FILE ROUTINES

The data file routines in the two versions of Maxi-2 have
virtually the same calling sequence, allowing most data file
programs to run under either version. Any differences
between the two will be mentioned in the description below.

Buffers

File commands are passed to the file routines through a
Maxi-BASIC string variable of 256 characters. This string is
initialized by filling it with 256 “P"s and executing a call to the
data file initialize routine (decimal address = 2560).

Data buffers for the file routines are also Maxi-BASIC string
variables. The wuser may specify up to 4 data buffers,
corresponding to each of the Phideck drives. Each data
buffer may be any size as long as it is a multiple of 256
characters (256, 512, 768, 1024, etc.). To initialize these
strings, dimension them to the desired length, fill them with
256 of the number corresponding to their drive number (256
"@"s, for example) and execute a call to the data file initialize
routine (decimal address = 256@). This call should be the
same as the call for the command buffer described above.

See the sample programs for examples of setting up the
various buffers.

File Commands

The command buffer is divided into four sections of 64
characters each. These four sections correspond to the four
cassette drives @8-3. Characters 1-64 are for unit @, characters
65-128 are for unit 1 and so on. A recommended method of
putting the command in the buffer is shown here:

P$(N¥ 64+1 N¥ 64+64)="(DESIRED COMMAND
STRING)"

where N=unit number

Once the command is in the correct portion of the command
buffer, it is executed by doing a call to the main data file
routine (decimal address = 2675):

Q7=CALL (2675, N)

where N=unit number and Q7=value returned by the file
function.

OPEN Command

The first command normally used when using the file
routines is OPEN. OPEN has two forms; opening a file for

OUTPUT (creating a new data file) and opening a file for
INPUT (preparing an existing data file for reading). The
format of the OPEN command is:

"FILE #N OPEN, (OUTPUT or INPUT), NAME.EX"

where N=unit number and NAME.EX is the nameof thefile to
be created (OPEN, OUTPUT) or the name of the file to be
read (OPEN, INPUT). The name is ignored in the audio
version.

The value returned by the OPEN (OUTPUT) command is the
number of blocks available for use on the device. The value
returned by the OPEN (INPUT) command is the number of
blocks in the file opened for reading. If the file is not found a @
is returned. In the audio version 65535 is always returned.

If a file is opened with a. WK extension it becomes a work file.
Work files ignore directories and start at block @ of the tape.
These may be used on blank tapes as scratch files. Trying to
create a work file on a tape with a directory will destroy that
tape's directory.

WRITE Command

The WRITE command is used towrite data from a data buffer
into a data file that has been opened for OUTPUT. The data is
written from the data buffer corresponding to the unit
number. Writing continues until either the dimensioned
length of the data buffer string, the space on the tape, or the
optional write biock count is exhausted. The format of the
WRITE command is:

"FILE#N WRITE (OPTIONAL WRITE BLOCK COUNT)”

where N=unit number. If specified, the write biock count
must be in parentheses. If a variable is desired as the write
block count, the STR$ function must be used to convert the
number into a string:

“FILE#N WRITE ("+STR$(W)+")"

The value returned by the WRITE command is the number of
blocks actually written into the file. If a @ is returned, the file
has been exhausted.

The audio version will clear the screen during a WRITE and
display the message: - . :

START RECORDING #N (SPACE)

Start the tape and press a space to begin writing.

READ Command

The READ command is used to read data from a file that has
been opened for INPUT. The data is read into the data buffer
corresponding to the unit number. Reading continues until
either the dimensioned size of the string, or the data file is
exhausted. The format of the READ command is:

"FILE#N READ (OPTIONAL OFFSET)"

where N=unit number. If a number enclosed in parentheses
appears in the command string, that number becomes the
offset block pointer to the file for random access files. A @ will
reset a file to the beginning. If a variable is desired as the
offset, the STR$ function must be used to convert the
number into a string as in the WRITE command. The offset
option is not available in the audio version.

The value returned by the READ command is the number of
blocks actually read. If a @ is returned, the file has been
exhausted and no reading was done. The length of the data
buffer string is set to the length of the data that was actually
read in.

The audio version will clear the screen during a read and
display the message:

START READING #N (SPACE)

Start the tape and press a space to begin reading. Reading
will continue until trailer is reached or the string length is
exhausted.

CLOSE Command

The CLOSE command is used to close any open file. It must
be used before reopening another file on that device because
only one file is allowed open on a device ata time. Also, when
creating a new file, the directory of that device is updated
only during a CLOSE. The format of the CLOSE command is:

"CLOSE#N"

where N=unit number.

USE Command

The USE command allows one data buffer to be used by
more than one device. The format of the USE command is:

"FILE#N USE#M”

where N is the unit that is to use unit M's data buffer. The
value returned by the USE command is the memory address
of the data buffer specified by M in the format above. This is
useful in determining the address of a data buffer.

ARRAYS

Arrays may be dimensioned with any number of dimensions,
limited only by available memory, e.g.,
100 DIM A(1), B7 (5,2,3,4,5,6)

Array indexing starts at element @. Array A in the above
example actually has two elements, A(@) and A (1). Use ofan
undimensioned array causes automatic dimensioning to a
one dimension, 1@ element array. Arrays may not be re-
dimensioned within a program.

STRINGS (see Appendix 1)

Strings of 8-bit characters may be dimensioned to any size,
limited only by available memory, e.g.,
100 DIM A$ (1),A1$ (10000)

Note that a string name is a variable name followed by a ($)
dollar sign. Substrings may be accessed as A$ (N,M) whichiis
the substring of characters N thru M. For example, if A$ is
"ABCDEF" then A$ (3,5) is "CDE". Alternatively, A$ (N)
identifies the substring including characters N thru the last
character in the string. The concatenation operator is a plus
sign.

If an assigned value is larger than the destination string or
substring, then it is truncated to fit. If the value assigned to a
substring is shorter than the substring, then the extra
characters of the substring are left unmodified. A string
variable used before being DIMensioned is given the default

-4- dimension of 1@. Strings may not be redimensioned within a

program. Strings may not be modified until they have been
defined by a LET A$= or INPUT A$ statement.

Strings, substrings and string expressions may be used in
conjunction with: LET, READ, DATA, PRINT, IF, and INPUT
statements. The string IF statement does alphabetic
comparisons when the relational operators are used, e.g.
100 |F A$+B$<"SMITH” THEN 50

When string variables are INPUT, they must not be quoted.
When strings appear in data statements, they must be
quoted.
NOTE: A string array is initialized as follows:

(Where N = Length of string).

For X=1to N : A$=AS$+" " : NEXT X

USER DEFINED FUNCTIONS

User-defined functions (either of type string or numeric)
may be 1-line or multiple line functions. There may be any
number of numeric arguments. Parameters are "local” to a
particular call of a function. That is, the value of the variable
is not affected outside of the execution of the function.

Functions are defined before execution begins (at RUN
time), so definitions need not be executed, and functions
may be defined only once.

Multiple line functions must end with a FNEND statement. A
multiple-line function returns a value by executing a
RETURN statement with the value to be returned, for
example:

100 DEF FNA (X, Y, 2)

200 IF Z=1 THEN RETURN X

300 X=Y* Z+X%*3

400 RETURN X

580 FNEND

600 PRINT FNA (1,2,X+Y)

BUILT IN FUNCTIONS

FREE (@) returns number of bytes remaining in
free storage

ABS (expr) returns the absolute value of the
expression

SGN(expr) returns 1,0, or -1 if the value is+,0, or -

INT (expr) returns the integer portion of the

expression value

returns the length of the specified
string

returns a string with the specified
character

returns the numeric value of the string
returns a string with the specified
numeric value

returns ASCIl code of
character in the string

LEN (string name)
CHRS$ (expr)

VAL (string expr)
STR$ (expr)

ASC (string name) the first

SIN (expr) returns the SINE of the expression

COS (expr) returns the COSINE of the expression

RND (expr) returns a random number between @
and 1

LOG (expr) returns the natural log of the
expression

EXP (expr) returns the value of e raised to the

specified power

returns the positive square root of the
expression

CALL (expr, optional expr) see below

SQRT (expr)

-5-

EXAM (expr) return contents ot adaressea memory
byte
return result of 80808 or Z-88 IN to

specific port

INP (expr)

MACHINE LANGUAGE SUBROUTINE
INTERFACING

The built-in function CALL takes a first argument which is
the decimal address of a machine language subroutine to
call. The optional second argument is a value which is
converted to an integer and passed to the machine language
subroutine in DE. The CALL function returns as a value the
integer which is in HL when the machine language
subroutine returns.
NOTE: CALL is a function and not a verb. Therefore:

10 LET X=CALL(1234) and not

10 CALL (1255)

FORMATTED OUTPUT

If no format string is present in a PRINT statement, then all
numeric values will be printed in the "default format”. (The
default format is initially set to be free format). A format
string appears anywhere in the print list and must begin with
a per cent (%) character, e.g.

PRINT %$1@F3,J

A format string consists of optional format characters
followed optionally by a format specification. The format
characters are:

place commas to the left of decimal point as needed
put a dollar sign to the left of value

suppress trailing zeroes

make this format string the default specification

D N® O

Format specifications (similar to FORTRAN) are:
nFm¥* F-format. The value will be printed in an n-
character field, right justified, with m digits to the right of
the decimal point.

ni%¥ |-format. The value will be printed in an n-character
field, right justified, if it isan integer. (Otherwise an error
message will occur.)

nEm¥* E-format. The value will be printed in scientific
notation in an n-character field, right justified, with m
digits to the right of the decimal point.

Ali printed values are rounded if necessary. A null format
string will print values in free format.

* n includes preceeding + or -, and all commas and dollar
signs

The general form is PRINT % XY ; |
Where

X=any combination (or none) of C, $, and Z
Y=any format specification
I=variable or constant
and where the separating comma or semicolon isas
in any non- formatted PRINT statement
i.e. PRINT %C$Z12F3; 1234.5609
$1,234.561
PRINT %C$Z12F2; 1234.5600
$1,234.56

CONTROL-C

Typing the CTRL-C character (ETX on some keyboards) has
the effect of prematurely interrupting MAXI-BASIC from
whatever it is doing. If a LIST is in progress, the listing will be
terminated at the completion of the output of the current line.
If a RUN or CONT is in progress, then execution will stop
after the completion of the currently executing statement,
and a CONT will continue executing the program.

DIRECT STATEMENTS

When MAXI-BASIC is in command mode, certain statements
may be typed for immediate execution. This is typically used
for examining the values of certain variables to diagnose a
programming error. Note that a pound sign (#) may be used
as a shorthand way of typing the PRINT reserved word. No
direct statement is permitted which transfers control to the
BASIC program. Also, DATA, DEF, FOR, NEXT, INPUT, and
REM are forbidden.

SAVING AND LOADING PROGRAMS

To save a current program onto cassette, the user should
turn on his recorder (on record) and type SAVE(cr). The CRT
screen will indicate that the tape is being written. When
finished. the screen will return with the ready message.

To load a program from the cassette, the user should start
playing the cassette. When the leader tone is heard, type
LOAD(cr). The CRT screen will indicate that the tape is being
read. When finished the screen will return with the READY
message. .

To LOAD or SAVE programs from Phidecks use this format:
LOAD#N NAME or SAVE#N NAME

where N=unit number and NAME is the name of the BASIC
program file. A .BA extension is automatically added.

All programs written on the Z-8@ are usable on the 8080
version of MAXI-BASIC and vice versa. Also, cassettes
written with level 1 MAXI-BASIC will be upward compatible
on all later levels of MAXI-BASIC.

SUMMARY

Maxi-BASIC, with these new data file routines, is a powerful
tool for the BASIC programmer. Unlike many standard forms
of BASIC datafile routines, these aliow the user to create and
read virtually any type of data file. Using the CHR$ and ASC
functions of BASIC, work files, and the random access
capability, the user has total control of data files.

APPENDIX
SAMPLE PROGRAMS

Program 1 is a demo program that copies a fite from unit @ to
unit 1 using the file routines in their standard form.

Program 2 uses a Maxi-BASIC user defined function to
simplify the use of the file routines and reduce the number of
lines in Program 1. Functionally, Program 2 is identical to
Program 1. The user may use this function to simplify the file
routine if he wishes.

Program 3 demonstrates one method of storing numbers in
data files. This program allows the user to input a series of
numbers (terminated by a -1) to be saved in a file named
"NUMBER.DA". Then the program reopens the file for input
and prints out the numbers stored there.

gEM :z PROGRAM TO COPY A FILE FROM UNIT @ TO UNIT 1
EM
REM ** DIMENSION AND SET UP BUFFERS
DIM P$(25€),B5(1024)
P$="P" : BS$="0
FOR X=1 TC 8
P$=P$+P$
B$=B$+B$
NEXT X
Q7=CALL(256@)
REM *% MAKE UNIT 1 USE BUFFER FOR UNIT @
P$(65,128)="FILE#1 USE#0
Q7= CALL(2675 1)
PRINT
INPUT "NAME CF FILE ? " ,N$
REM *% QPEN FILE ON UNIT @ FOR READING
REM ** L WILL EQUAL NUMBER OF BLOCKS IN FILE
P$(1,64)="FILE#@® OPEN, INPUT, +N$
L= CALL(2675 2)
IF L=¢ THEN 440
PRINT .
INPUT "NEW NAME IF ANY 2 ",N1%
IF N14<>"" THEN N$=N1%
REM ** OPEN FILE ON UNIT 1 FOR WRITING
REM ** L1 WILL EQUAL NUMBER OF AVAILABLE BLOCKS
P$(65,128)= FILE#1 OPEN,OUTPUT, +N$%
L1= CALL(2675 1)
IF L)L1 THEN 460
REM *% READ NEXT BUFFER-FULL
HEM *¥ B WILL EQUAL BLOCKS READ
P4(1,64)="FILE#0 READ
F=CALL(2675,8)
IF B=2 THEN 390
REM ** WRITE B BLOCKS ONTO UNIT 1
F4(65,128)= FILE#1 WRITE ("+STR$(B)+)"
Q7= CALL(267 ,1)
GOTO 320 : REM ** DO NEXT BUFFER LOAD
REM ** CLOSE FILES
P$(1,64)="FLLE#C CLOSE"
P$(6,,128)~ FILE#1 CLOSE"
¢7=CALL(2675,0)
Q7=CALL(2675,1)
GOTO 14@
PRINT "FILE NOT FOUND"
GOTO 140
PRINT “NO ROOM"
GOTO 14@

vProgram 1

LIST Program 2

1¢ REM ** PROGRAM TO COPY A FILE FROM UNIT & TO UNIT 1
20 REM **

2g REM ** DIMENSION AND SET UP BUFFERS

40 DIM P4(256),B5(1024)

¢ DIM Ci(64)

€@ P4=P : B4= ¢

7@ TFOR X=1 TO 8

€@ P4=P$+P$

co B4=RS$+BS

100 NEXT X

11¢ Q7=CALL(2560) :
12¢ REM ** USER DEFINEL FUNCTION TO DO FILE CALLS
13¢ DEF FNF(C$)

14@ U=ASC(C$(€,6))-48

18¢ P4 (U*64+1,U%64+64)=C}

162 RETURNCALL(2675,U) °

170 FNEND

18¢ REM ** MAKE UNIT 1 USE THE BUFFER FOR UNIT @
198 Q7=FNF("FILE#1 USE#0)

200 PRINT .

21@ INPUT "NAME OF FILE ? ,N$

220 REM ** OPEN FILE FOR READING, L=BLOCKS IN FILE
c3¢ L=FNF("FILE#@ OPEN,INPUT, +N$)

240 IF L=0 THEN 41¢

250 PRINT .

2686 INPUT "NEW NAME IF ANY ? JN13

27¢ IF N13<>" THEN N$=N1$5

28¢ REM ** OPEN FILE FOR WRITING, L1=AVAILABLE BLOCKS
208 L1=FNF("FILE#1 OPEN,OUTPUT, +N$%)

2900 IF L>L1 THEN 43¢

21¢ REM ** READ A BUFFER-FULL, B=BLCCKS READ

32@ B=FNF('FILE#@ READ)

23g IF B=p THEN 38¢

24¢ REM ** WRITE B BLOCKS ONTO OUTPUT DEVICE

26¢ Q7=FNF(FILE#1 WRITE(+STR$(B)+))

26¢ GOTO 30@

379 REM ** CLOSE FILES |

28¢ Q7=FNF(FILE#@ CLOSE)

26g C7=FNF("FILE#1 CLOSE)

4¢0 GOTO 200 : .

419 PRINT "FILE NOT FOUND

42¢ GOTO 2¢0)

43¢ PRINT "NO ROOM

449 GOTO 200

LIST

10
20
z
40
<o
€0
0
ee
S0
100
11¢
120
130
140
150
160
17¢
16€
190
200
210
220
230
<40

- 250

260
270
280
<90
300
31¢
320
330
40
250
360
270
280
290
400
410
420
430
440
450

47¢
48¢
490

£10
£20
£30
54¢

REM *% SAMPLE PROGRAM TO CREATE DATA FILE OF NUMBERS
REM *%* AND READ THEM BACK
REM %%
REM ** LIMENSION AND SET UP STRINGS
DIM P4$(256),B%(25€)
DIM C$(64),N3(20)
P$="P" : B9=1
FOR X=1 TO 8
P$=P$+P$%
B$=B5+B%
NEXT X : ’
Q7=CALL(256@)
REM ** USER FUNCTION TO DO FILE CALLS
DEF FNF(C$%)
U=ASC(C$(6,6))-48&
P (U%E4+1,U¥E4+64)=C}
RETURNCALL(2675,U)
FNEND
REM ** OPEN FILE FOR WRITING - Q7=AVAILABLE BLOCKS
Q7=FNF("FILE#1 OPEN,OUTPUT ,NUMBER.DA)
PRINT "INPUT NUMBERS TO BE SAVED
PRINT "=-1 TERMINATES LIST

INPUT N

IF N=-1 THEN 32¢

REM ** ADD NEW STRING TO BUFFER, WRITE IF OVERFLOW
N$=STRS$(N)

IF LEN(BS)+LEN(N$)>255 THEN 328

B$=BS$+N$

GOTO 250

F4=B4+CHR$(1) : REM ** MARK END OF BUFFER WITH A 1
REM ** WRITE BUFFER, Q7=ACTUAL BLOCKS WRITTEN
Q7=FNF("FILE#1 WRITE)

Ig Q7=¢ THEN 530

BS=

IF NO-1 THEN 3080

REM ** CLOSE FILE (PUTS FILE INTO DIRECTORY)
Q7=FNF(FILE#1 CLOSE")

REM ** RE-OPEN FILE FOR READING - 07=BLOCKS IN FILE
C7=FNF("FILE#1 OFEN,INPUT,NUMBER.DA)

REM *% READ NEXT BUFFER-FULL - Q7=ACTUAL BLOCKS READ
Q7=FNF("FILE#1 READ)

1F Q7=¢ THEN 540

REM %% GET NUMBERS OUT OF BUFFER

I=1

N=VAL(B4(I+1,256))

PRINT N;

I=1+1 5

IF B&(1,I)= THEEN 4790

IF ASC(BS(I,I))<>1 THEN 490

GOTO 430 .

PRINT ~NO MORE ROOM

END

”

-10-

Program 3

LIST

100 REM PRINT A VERTICAL SINE WAVE
110 REM

120 FOR J=1 TO 10 STEP .3

130 S=INT(15%(SIN(J))),

140 PRINT TAB(15+S); *

150 NEXT J

16¢ END

REN 1¢,2

LIST

1¢ REM PRINT A VERTICAL SINE WAVE
12 REM

14 FOR J=1 TO 1@ STEP .3

16 S=INT(15%(SIN(J))),

18 PRINT TAE(1E+S); *

20 NEXT J

22 END
RUN
E3
£
£
*
-
£
xN
%
%
*
ES
E
*
i
%
%*
%
%
*
£
3
3
L
*
£
3
*

-11-

LIST

100
110
120
130
140
15¢
1€0
17¢

REM A NUMERIC SORT PROGKAM
REM
DIM A(15)

FOR J=1 TO 15
INPUT A(J)
NEXT J

REM DO EXCHANGE SORT UNTIL ALL IN ORDER

PRINT "INPUT FIFTEEN VALUES, ONE VALUE PER LINE"

175 F=@0 : REM THIS FLAG USED TO SIGNAL WHETHER DATA IN ORDER YET

18¢ FOR J=2 TO 15

150 IF A(J-1)<=A(J) THEN 22¢

200 T=A(J) ¢ A(J)=A(J-1) : A(J-1)=T

219 F=1 : REM SET FLAG

220 NEXT

23¢ IF F=1 THEN 175 : REM_LOOP IF EXCHANGES HAPPENED
240 PRINT "SORTED ARRAY: ; o

23@ FOR J=1 TO 15 : PRINT A(J); ; ¢ NEXT

RUN

INPUT FIFTEEN VALUES, ONE VALUE PER LINE
7123

222

=37

({}

72

7-54

231

78

?-9'4

71.54

?-3.8

236

721

7-43

7213

SORTED ARRAY: =54
31 36 123 213

-43 =37 -9.4 -3.8 0

-12-

1.54 2 8 21

: REM EXCFANGE A(J) AND A(J-1)

22

LIST

1 REM TO INITIALIZE A STRING VARTARLE
20 REM USE THE FOLLOWING ROUTINE

20 REM BEFORE ATTEMPTING TO ALTER THE STRING
4¢ DIM A$(N) : REM WHERE N=STRING LENGTH

E¢ FOR X=1 TO N

€6 LET A$=AS+

7¢ NEXT X

LIST

16 REM CHARACTER SORT
20 REM EXAMPLE USING STRINGS ANL FUNCTION

0 DIM A$(72) .

40 INPUT "TYPE A STRING OF CHARACTERS: ~,A$

£g IF LEN(A$)=@ THEN 4¢ : REM MAKE SURE SOMETEING WAS ENTERED

€0 IF FNA(LEN(A$))=1 THEN 60 : REM CALL FNA UNTIL IT RETURNS A ZERO VALUE
7¢ PRINT "SORTED ARRAY: ;A3 |

80 END

@ DEF FNA(N) : REM CHARACTER SORT

100 REM RETURN & IF A% SORTED, ELSE RETURN 1

11¢ LET F=0

12¢ FOR J=2 TC N

13¢ IF A$(J=-1,J-1)<=A%(J,J) THEN 160

14€ Té=A$(J,J) : A$(J,J)=A%(J-1,J-1) : A$(J-1,J-1)=T3

150 F=1

160 NEXT J

17¢ RETURNF

18¢ FNENT

RUN

TYPE A STRING OF CHARACTERS: DIGITAL GROUP
SORTEL ARRAY: ALGGIILOPRTU

13-

480
400

‘50

REM TV DESIGNER
REM e
FOR A=1 TO 5 : PRINT : NEXT A
PRINT TAB(8); TV DESIGNER"
PRINT)
INPUT "ENTER LINE FREGUENCY ,L
INPUT "ENTER PORZ HOLLOFF RATIO
INPUT "ENTER VERT HOLIOFF RATIC
INPUT "ENTER CHARACTERS/LINE ",C
INPUT "ENTER ROWS OF CHARACTERS
INPUT "ENTER HORZ PEL/CHARACTER
INPUT "ENTER H PEL SPACES °,S
INPUT "ENTER LINES/CHARACTER ,
INPUT "ENTER LINES DURING JUMP
REM
REM
REM
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET
REM
LET

CALCULATIONS

CORRECTED TOTAL LINES
A=INT(((X+J)*R*V)+.5)
CORRECTED V HOLTOFF RATIC
V=A/((X+J)*R)

HORZ FREGUENCY
B=A*L

VISIBLE H PEL
D=C*(P+S)

CORRECTED EFFECTIVE H PEL
E=INT((D*H)+.5)

CORRECTED EORZ HOLDOFF RAT
T=E/D

PEL RATE IN MHZ

F=E*B/10€0

TIME/PEL IN NS
G=(1/F)*1000000
TIME/CHEARACTER IN NS
I=G*(P+S)

HORZ LINE TIME IN US
XK=(1/B)*1¢02 000

HORZ BLANKING TIME IN US
M=K*((E-D)/E)

FRAME TIME IN MS
N=(1/1)%1008¢

VERT BLANKING IN MS

O=(N*((A-((X+J)*R))/A))
TOTAL VISIBLE PEL
S=D*(P+S)
REM TOTAL VISIBLE LINES
LET U=(X+J)*R
PRINT "H FREQ N
PRINT VIS E PEL LD
PRINT 'VIS LINES ;Uj .
PRINT "H RATIO ";%4F2;7T;
PRINT ' NS/PEL .,%4F1;Gy
PRINT "E LINE " ;%6F2;K;
PRINT "FRAME ";%5F2;Nj
PRINT TAR(1€);’

XTAL
TOTAL

,INT(B)p

VR

* e i o e ok ook

TOTAL LINES

NS/CHAR
H BLANK
V BLANK

" .P
A |
.R

,P

'J

10

aINT&F)
B PEL .:E
'A
" "3 %4F2;V
.’%5F1)I
" s X6F2:M
s X6F250

ATIO

-14-

RUN

TV DESIGNER

ENTER LINE FREGUENCY 60

ENTER HORZ HOLDOFF RATIO 1.5
ENTER VERT HOLDOFF RATIO 1.25
ENTER CHARACTERS/LINE 64

ENTER RO¥WS OF CHARACTERS 1€

ENTER HORZ PEL/CHARACTER 7

ENTER H PEL SPACES 1

ENTER LINES/CHARACTER 12

ENTER LINES DURING JUMP 1

B FREQ 156290 XTAL 11980

VIS B PEL 51z TOTAL H PEL 768
VIS LINES 208 TOTAL LINES 26¢
E RATIO 1.50 V RATIO 1.25
NS/PEL 83.% NS/CHAR 667.7

H LINE €4.10 H ELANK 21.37

FRAME 16.67 V BLANK 3.33
sl ok %ok :

-15-

READER’S COMMENTS

The Digital Group would like to improve the quality and usefulness of this publication. To do this
effectively, we need user feedback — your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments.

NAME: DATE:

STREET:

CITY: STATE: ZIP:

TELEPHONE NUMBER:

Please send this form to:

SOFTWARE DEVELOPMENT/MAXI-BASIC
DIGITAL GROUP INC.

P. O. BOX 6528

DENVER, COLORADO 80206

-16-

