 [Ceddtelgoup)

po box 6528 denver, colorado 80206 (303) 777-7133

p—

BUSINESS BASIC

296-001-A-18+3

Business BASIC — Table of Contents

Introduction
Machine Requirements...........................
Manual Conventions.........

Usage of Business BASIC
Entering A Program
Corrections ...
Multiple Statements per Line
Direct Executionol
Interrupting Execution..........................

Commands [

ATTAYS .
Strings ... R
Operatorst
Loading and Saving Programs

Statements............... .
REM e

Data Handling Statements......................
CONVERT .. s

UNDIM

END ...

GOTO .o e

General Input/Output Statements 8
CURSOR. ... i e 8

ENTER 8

IMAGE e 8

INPUT and INPUTT ...t 8

KEYIN o e e 8

OUT L e 9

PRINT e 9

PRINT HEX ... i i e 9
PRINTUSING ... 9

File Statements il 10
CLOSE .. i e 10

GET ottt 10

OPEN ..ot 10
PURGE .. it 10

PUT ot 1
REWIND ...ttt 11
Functions i 1
System Functions......................ooL 11
ABS .. 11

ASC L 11

CALL .t 11

CHRS . e 12

COS 12

EXAM . 12

EXP e 12

FREE .ottt e 12

HEX oo 12

INP e 12

INT e 12

LEN o 12

LOG ti e 12

RND .t e 12

SGN 13

SIN 13

SQRT L 13

STRS ot 13

TAB o 13

VAL .o 13

User Defined Functions 13
DEF o 13
FNEND ..ottt 13
Advanced PRINT Usage 14
Control Charactersociviiiiin, 14
Printer Functions 14
Output Device Selection....................... 14
Appendix A — File 1/O Error Codes 15
Appendix B — Program Installation 16
Appendix C — Conversion of MAXI-BASIC .. 17
Source Programs it 17
Appendix D — PHIMON Considerations...... 18

BUSINESS BASIC V1.0

introduction

Business BASIC is an extension of the original MAXI-
BASIC available from the Digital Group. It has been
modified, by MicroWorks Inc., so that users of Digital
Group systems can more fully utilize their systems
including Phidecks, printers, and TV-64 display. Special
attention has been paid to the needs of those individuals
intending to write business application programs. Included
in Business BASIC are many new features not previously
available to Digital Group users, such as a complete file
handling package, printer drivers with upper and lower
case, cursor capability for the TV-64 display and masked
conversion of strings to numbers and vice versa. This
manual is not designed to teach BASIC; however,
experimentation with the programs contained in this
manual will allow the uninitiated user to become familiar
with the language. It is intended to be used as a reference
manual.

Machine Requirements

Business BASIC requires that the system in use contains
the PHIMON operating system. No standard operating
system is included in Business BASIC, unlike previous
releases of BASIC. Pages 1-5 are now used for the file
handling routines.

Business BASIC itself occupies 68 pages of memory (17K)
and PHIMON occupies 8 pages (2K) plus 4 pages (1K) for
the directory buffer. Therefore, the minimum memory
configuration is 26K. A standard ASCIl keyboard is
addressed as input port @ and a TV-64 display driver is
addressed as output port @. Full driver routines are
provided to operate a Digital Group printer which, if used,
must be attached to port 3 (input and output).

Manual Conventions

In this manual certain conventions have been adopted. The
term constant refers to a numeric constant, i.e, 1, 29,
52736, etc. The term variable refers to a numeric variable
name. i.e., A, B3, Z9, etc. The term expr refers to a numeric
constant or a numeric variable name or a valid arithmetic
expression, i.e., A+1, A+T5 etc. The term str constant
refers to an alphanumeric constant, i.e., "TOP",
"UNIT2","345" etc. The term str variable refers to an
alphanumeric variable name, i.e.. A$, B8$ R7$ etc. The
term str expr refers to an alphanumeric constant or an
alphanumeric variable name or a valid alphanumeric
expression, ie., A$+B$, R7$+'X" etc Brackets []
surrounding a parameter indicate that it is optional. All
control characters will be denoted by CTRL-x, e.g., CTRL-
H. CTRL-H is entered by depressing the "CTRL" key and
the "H” key at the same time

Usage of Business BASIC

Entering a Program

Each program line is preceded by a statement number
used to identify the line number. The valid range for these
numbers is zero through 65535. Business BASIC assumes
that any tine beginning with a line number is to be
processed by the program editor; all others are considered
commands or direct execution statements. The program
editor serves as the user's method of entering and aitering
a program. If the statement number is valid and the line
contains at least one character beyond the statement
number, the line is added to the program. If the statement
number is equal to an existing statement number, the
existing line is replaced by the new line. If there are no
characters beyond the statement number, the line with a
matching statement number is deleted. An error will be
generated if the statement number is invalid, or if the line
is fonger than the current line length (see LINE command),
or if memory becomes fuil.

Blanks preceeding a statement number are ignored. The
first non-numeric character delineates the statement
number from the rest of the line. All blanks are ignored,
except those contained in a quoted literal. Blanks are
inserted automatically in listings for ease of reading. FOR-
NEXT loops are also indented for the same reason.

Corrections

Before typing a carriage return, corrections may be made
to a line in two ways. First, typing a RUBOUT (left arrow or
ASCII DEL on some keyboards) causes Business BASIC to
backspace one character. Typing a CTRL-X (ASCH
CANCEL) causes Business BASIC to ignore the entire line.

Multiple Statements Per Line

Multiple statements on one line are allowed. The
statements should be separated by a colon.

Example: 10 PRINT A : GOTO 40
A statement number may occur only at the beginning of a
line.

Direct Execution

All statements may be entered without a statement number
for immediate execution. This allows the user to examine
values and perform other operations without having to run
a program Multiple statements per line may also be
entered for direct execution.

Interrupting Execution

To stop a listing or execution of a program, type a CTRL-C
(ASCII ETX). If a list is in progress, the output will stop at
the end of the line currently being listed. If program
execution is in progress, it will terminate at the end of the
current statement being executed. Typing CONT (see
"Commands”) will resume execution of the program.

Commands

There are two types of directives the user may present to
Business BASIC: commands and statements. Commands
are defined as those directives which act upon the
program contained in memory. Statements, on the other
hand, are defined as the individual lines of code which
make up the program contained in memory. The following
are the commands available in Business BASIC:

AUTO [constant 1] [,constant 2]

This command allows automatic numbering of statements
as they are being entered into the system. Constant 1
represents the starting statement number. Constant 2
represents the increment to be used between statement
numbers. To exit from the automatic numbering mode,
type a CTRL-D (ASCIl EOT).

Example: AUTO 20,5
(Begins auto statement numbering at line
20 and indicates an increment of 5 between
numbers, i.e., 25, 30, 35, etc.)

CLEAR

This command clears the contents of all variables. All
dimensioned variables are deleted and all function
definitions are removed.

CONT

This command continues execution of a Business BASIC
program after execution of a STOP statement or a CTRL-C
interruption.

DELAY [constant]

This command causes a delay to be generated between
characters on output. The delay generated is the constant
times .00266 seconds, where the constant is @ to 255.
(Note: If the constant is omitted the default value @ is
assumed.)

Example: DELAY 100
(causes a .266 second delay between
characters on output.)

LINE constant

This command establishes the maximum line length of the
system's terminal device. No input or output line longer
than the specified number of characters will be aliowed. If
an attempt is made to enter a longer line on input, a
"length’" error will be generated. On output a new line will
automatically be generated after the specified number of
characters have been sent to the terminal device. The
range for the constant is 1 to 132. Maximum line length has
no effect when a program is being listed on the screen.
Line length may be altered from within the program by
executing a "FILL 12890,expr” (see "Statements” below).

LIST [constant 1] [.] [constant 2]

This command is used to list the statements comprising
the program currently in memory. There are four variations
of this command, each performing a different function.
The first variation is LIST with no parameters; this will list
the entire program starting with the first statement. The
second variation is LIST with constant 1; this will list the
statement which has a statement number equal to constant
1. The third variation is LIST with constant 1 followed by a
comma, which will list the program starting with the
statement number equal to constant 1 through the last
statement. The final variation is LIST with constant 1 and
constant 2 separated by a comma; this will list all
statements from the statement number equal to constant 1
to the statement number equal to constant 2, inclusive.

REN [constant 1] [,constant 2]

This command is used to renumber the entire program.
Constant 1 is used to indicate the first statement number in
the resulting renumbered program. Constant 2 is used to
indicate the increment between statements in the resulting
program. If constant 1 or constant 2 is omitted a default
value of 10 is assumed.

RUN [constant]

This command instructs Business BASIC to begin
execution of the program. The constant is an optional
statement number at which to begin execution. If the
constant is omitted, execution will begin with the first
statement in the program. (See also “Loading and Saving
Programs”.)

SCR

This command is used to clear the program and data
storage area in Business BASIC so that a new program
may be entered.

Constants

Storage of all numeric constants and all other numeric
items is in Binary-Coded-Decimal (BCD). Eight digits of
precision are maintained at all times,; therefore, rounding
off may occur within a program if necessary. The
magnitude range of constants is .1E-63 through
.99999999E+63.

Variable Names

Simple numeric variable names are denoted by a single
letter or a letter followed by a number (e.g., A, R@, Z9,
etc.). Ea®¢h numeric variable occupies eight bytes of
memory. Once assigned a value these bytes cannot be
released without issuing a CLEAR or SCR command.
Numeric array variable names take the same form as
simple numeric variable names. The number of bytes
required by a numeric array can be calculated by the
following formula:

Number of bytes = (Total number of elements % 5) +
(Number of dimensions % 2) + 7

Unlike simple numeric variables, the memory occupied by

-o- an array can be released by the program. (See UNDIM.)

String variable names take the same format as simple
numeric variables with the addition of a "$” (e.g., A$, ROS$,
Z9$, etc.). The memory requirements for a string variable
can be calculated by the following formula:

Number of bytes = Dimension size of string + 7

Memory occupied by strings may be released in the same
way as memory occupied by arrays. There are no string
arrays supported by Business BASIC.

Function names are in the same format as simple numeric
variable names preceded by "FN” (e.g., FNA, FNR@, FNZ9,
etc.). Note that the same variable name can be used to
refer to a simple numeric variable, a numeric array, a string
and a function definition. As an example, the names AQ,
A0G(0,8), ABS$, and FNAGQ all refer to different items and no
relationship between these items is assumed to exist.
DATE is a special variable name in Business BASIC, used
to contain today's date, and may be used in statements as
a string name. (No substring reference is allowed.) If DATE
is used in an INPUT statement an automatic prompt,
"Enter date: (MM/DD/YY)", will be generated.

Arrays

Arrays in Business BASIC may be dimensioned with any
number of dimensions. Indexing of arrays is zero relative,
i.e., the first element of an array is element zero. An array
established by the statement 1@ DIM X(2) would
contain three elements: X(@), X(1) and X(2). Care must be
taken so that an array is not re-dimensioned without first
having been released. (See UNDIM.)

Strings

Strings in Business BASIC may be dimensioned to any
size (with the obvious upper limit of available memory).
Strings may be referenced in two ways. The first is to
reference the entire string; this is done by using the string
name alone (e.g., 28 LET B$=A$. . . this says “Copy the
contents of the entire string called A$ into the entire string
called B$".). The second is to reference part of the string
(hereafter called a sub-string); this is done by using the
string name followed by two parameters enclosed in
parentheses. The first parameter indicates the starting
position in the string and the second indicates the ending
position (e.g., 20 LET B$=A$ (4.7) . . . this says “Copy the
contents of the fourth through the seventh character of the
string called A$ into the entire string called B$".). If only
the first parameter is provided, the substring is assumed to
begin with the indicated position and continue through the
end of the string (e.g., 20 LET B$=A$(4) . . . this says
“Copy the contents of the fourth through last character of
the string called A$ into the entire string called B$".).

Combining two strings into one (i.e., concatenation) is
accomplished by use of the plus sign (e.g.. 20 LET
B$=A$+C$. . . this says “Append the contents of the entire
string called C$ to the contents of the entire string called
A$ and place the resuit in the entire string called B$". The
strings A$ and C$ are unaffected.).

All strings should be initialized before accessing them
using substring notation.

Example: 10 DIM A$ (10)
20 FOR I=1 to 10
30 A$ =A$+ "o
40 NEXT |

When assigning a value to a string, if the result string is not
subscripted the result string is replaced by the assigned
value.

Example: A$="ABCDEF"
PRINT A%
ABCDEF

If the result string is subscripted and the value is longer
than the result string, the assigned value will be truncated
to fit. Further, if the assigned value is shorter than the
result substring, the extra characters in the result substring
will be unaffected.

Example: A$="ABCDEF"
PRINT A$
ABCDEF
A$(2.3)="WXYZ"
PRINT A$
AWXDEF
A$(2,3)="R"
PRINT A$
ARXDEF

When using string IF statements, strings of unequal length
will not be considered equal. If two strings of different
lengths are equal up to the length of the shorter string, the
shorter string is assumed to be the lesser in value. Strings
in DATA statements and string constants must be
enclosed in quotes.

10 LET A$="ABC"
30 DATA "XYZ","UNIT"

Example:

"~ Operators

The valid numeric operators for Business BASIC are: "+

for addition, "-" for subtraction, "¥ " for multiplication, “/"

for division and "# for exponentiation. When an arithmetic

operation is executed, any exponentiation in the statement
is done first. Next, any multiplication or division is
executed in left to right order. Finally, any addition or
subtraction is executed, also in left to right order.

PRINT 1+2%5+4
15

Example:

If execution in some other order is needed, parentheses
may be used. If a pair of parentheses appears within
another pair, execution starts with the innermost pair and
moves outward.

PRINT (1+2)% (5+4)

27

PRINT (1+2)% (5+4)+4% 2
35

PRINT (1+2)% ((5+4)+4% 2)
51

Example:

Relational operators are "=" for equal to, " <" for less than,
" >" for greater than, "< > " for not equal to, "< =" or "=<”
for less than or equal to, and "> =" or "=>" for greater
than or equal to. A relational operation assigns a value of 1
for true and zero for false.

PRINT 2=3
)

PRINT 2<3

]

A$="TEST"

PRINT (A$="TEST")
.

Example:

Boolean operators are AND, OR and NOT. Boolean
operands are considered true if not equatl to zero and false
if equal to zero. Results of boolean operations are 1 or
zero.

Example: PRINT 1 AND 0
2
PRINT 3 OR 0
1
(Note: The usual usage for the boolean operators is for

complex IF statements, but they can be used as above for
other purposes such as program analysis of complex logic
structures.)

Loading and Saving Programs
Saving source programs is accomplished by the statement:
SAVE#expr.str expr

where expr is the drive number and the string expr
contains the program name.

Loading of previously SAVEd programs is accomplished
by the statement:

LOAD#expr,str expr

where expr and the string expr have the same usage as in
SAVE.

A special form of RUN (see "Commands"”) allows for
LOADing and executing a source file:

RUN#expr,str expr

where expr and the string expr have the same usage as in
LOAD or SAVE.

LOAD, SAVE, and RUN are all executable statements.

10 RUN#0,"TSTPRG”
20 LOAD#1,A$
30 SAVE#3,"TSTPRG”

Example:

Statements

The statements available in Business BASIC can be broken
down into four categories: data handling, program control,
general input/output, and file statements. There is one
special statement which does not fall into any of these
categories, the REM statement.

REM

Format: 1@ REM [any comment]
or 160 ’ [any comment]

This statement is used to place remarks in a program. It is
ignored during execution of the program, but will appear
in any LIST of the program.

10 REM THIS PROGRAM WRITTEN
OCT. 15

Example:

Data Handling Statements

CONVERT

Format: 20 CONVERT exnr TO str variable (mask)
or 20 CONVERT str variable TO variable

The CONVERT statement is used to convert numbers to
strings and strings to numbers. The mask is used to
indicate the format of the resulting conversion. The mask
is made up of the following characters:

Optional minus sign

#

Character that will be replaced by a digit

il

Optional decimal point

LET X=234.56789

CONVERT X TO AS$(###.4¥)
PRINT A$

234.57

CONVERT X TO A$ (-### ##)
PRINT A$

0234.57

X=-234.56789

CONVERT X TO A$ (-### ##)
PRINT A$

-234.57

ET A$="234.56789"
CONVERT A$ TO X

PRINT X

23456789

Example:

DIM

DIM variable namel(expri,expr2 . .
variable name2(expr1, . . .) , . . .
DIM str variable name1({expr),str variable
name 2(expr) , . . .

Format: 10 . exprn),

or 10

The DIM statement is used to establish the maximum size
requirements for strings or numeric arrays. There is no
limit to the number of dimensions attributed to a numeric
array. A string may have only a single dimension. If no DIM
exists for a numeric array, it is assumed to be a one-
dimensional array of ten elements. Non-dimensioned
strings are assumed to have a maximum of ten characters.

_4-

Example: 10 DIM X(2,4.5.2,3).C$(23)

FILL
Format: 10 FILL exprl, expr2

The FILL statement is used to place a value into a specific
location in memory. The value bf expr2 is placed in the
location indicated by expr1. Exprt may have a value from
0 to 65535, expr2 may have a value from 0@ to 255.

16 FILL 65535,255
(places the hex value FF at hex address
FFFF)

Example:

LET

Format: 18 [LET] variable = expr
or 10 [LET] str variable = str expr

This statement is used to assign the variable named to the
left of the equal sign, the value of the expression to the
right of the equal sign. The equal sign should be read as
"is replaced by"”. Thus, the first example below would be
read "let A be replaced by the value X plus one".

10 LET A=X+1
20 LET D$="test"

Example:

Note: Multiple assignments such as 10 A=B=@ are not
allowed. (This statement is treated as a boolean
expression.) The proper form would be 10 A=0 : B=0 .

PACK
Format: 1@ PACK (mask) str variable FROM expr

The PACK statement is used to compress numeric data
into a string variable. The mask is used to indicate the
maximum size of the result string and the number of
decimal places in the result. The format of the mask is the
same as CONVERT. The length of the result string is
calculated by the following formula:

Number of bytes = INT((Number of significant
digits indicated by mask+1)/2)

This two-for-one compression will require less memory for
storage of numbers with a few significant digits and is
particularly useful for size reduction of mass storage
records. (See also UNPACK.)

X=314.159
PACK (###.#%) A$ FROM X
PRINT LEN(AS$)

3

Example:

READ AND DATA

Format: 1@ READ variable 1,variable 2, . . . variable n
20 DATA constant 1,constant 2, . . . constant n
(The variable and constants may be string as well
as numeric.)

The READ and DATA statements are used to enter pre-
determined data into a program. The READ statement will
assign the values contained in the DATA statement to the
variables named in the READ statement. The first variable
in the first READ statement will be assigned the first value
contained in the first DATA statement in the program.
Each successive variable contained in a READ statement
will be assigned the next value in a DATA statement. As all
values in a DATA statement are used, the next DATA
statement in the program is used. Care should be taken
that the type of variable and the type of the value agree,
i.e., a numeric value for a numeric variable and a string
value for a string variable, or an error will occur.

Example: 10 READ X,A$B.Z$
20 DATA 23,"TEST”
30 DATA 50,"TEST?2"
40 PRINT X ,A$,B,Z$
RUN
23 TEST 50 TEST2
RESTORE

Format: 10 RESTORE {statement number]

The RESTORE statement is used to instruct Business
BASIC to begin using a particular DATA statement. If the
optional statement number is given, the DATA statement
indicated will be used by the next READ statement. If no
statement number is given, the first DATA statement in the
program will be used by the next READ statement.

1@ RESTORE
90 RESTORE 85

Example:

UNDIM

Format: 1@ UNDIM variable 1, variable 2, . . . variable n
(Variable name 1 through n may be string or
numeric array names.)

The UNDIM statement is used to free up the space
occupied by strings and/or numeric arrays. The indicated
strings and/or numeric arrays are deleted and all other
variables are moved, so that all variables will occupy a
contiguous section of memory. All data contained in the
variables named in the UNDIM will be lost.

PRINT FREE(Q)
5825

DIM A(15).B$(12)
PRINT FREE(Q)
5717

UNDIM A,B$
PRINT FREE(@)
5825

Example:

UNPACK
Format: 1@ UNPACK (mask) variable FROM str variable

The UNPACK statement is the opposite of the PACK
statement. This statement is used to take a PACKed
number in a string and turn it back into a numeric variable.
The mask is used to indicate the format of the PACKed
number. The masks used in the PACK and UNPACK
statements should be the same. The format of the mask is
the same as CONVERT.

X=314.159

PACK (###.##) A$ FROM X
UNPACK (###. ##) X FROM A$
PRINT X

314.15

Example:

(Restriction: Do not attempt to UNPACK into a variable
named |. To do so will result in an error message because
the BASIC interpreter will interpret the “1” and the "“F" as
an "IF")

Program Control Statements

END
Format: 1@ END

This statement terminates execution of a program. There is
no way to CONTinue execution after an END.

Example: 9999 END

EXIT
Format: 18 EXIT statement number

This statement functions in the same way as a GOTO
statement. In the process it terminates the currently active
FOR-NEXT loop. It must be used to branch out of a FOR-
NEXT loop. Using a GOTO to branch out of FOR-NEXT
loops will result in control stack errors. This is because the
FOR-NEXT loop places information on the internal control
stack and a GOTO will not clear this information. (In
earlier versions of Maxi-BASIC, the EXIT cleared ALL
active FOR-NEXT loops. This version clears only the
currently active innermost loop.)

10
20
30
40
50
60
RUN
1

FOR =1 TO 3

FOR J=1 TO 10

IF J=3 THEN EXIT 60
PRINT |J

NEXT J

NEXT

Example:

WWwnN N~
N = N = N -

FOR - NEXT

Format: 18 FOR variable = exprt TO expr2 [STEP expr 3]
5¢ NEXT [variable]

These statements are used to establish iterative loops. The
FOR statement, during the first iteration has no effect
except to assign the value of expri to the named variable.
Control is then passed to the statement following the FOR.
When the NEXT statement is encountered several things
occur. First, the value of the optional expr3 (or 1 if no
STEP is present) is added to the variable named in the
FOR. Then a comparison is made between the named
variable and expr2. If the named variable is greater, control
is passed to the statement following the NEXT statement. If
the variable is not greater, control is passed to the
statement following the FOR.

10 FOR I1=1 TO 10 STEP 3
20 PRINT |
30 NEXT
RUN
1
4
7
10

Example:

FOR-NEXT loops may be muitiply nested. Care must be
taken so that FOR-NEXT loops are contained totaily one
within the other. No overlap of FOR-NEXT loops may
occur. The variable name in the NEXT is optional. If it is
present, a check will be made for proper nesting.

GOSUB
Format: 10 GOSUB statement number

The GOSUB statement is used to pass control to the
statement number indicated and establish the linkage
necessary to come back to the statement following the
GOSUB. (Used with RETURN.)

Example: 18 GOSUB 1055

GOTO
Format: 10 GOTO statement number

The GOTO statement passes control to the indicated
statement number.

Example: 180 GOTO 1905
IF...THEN . .. ELSE
Format: 1@ IF condition THEN any statement

[ELSE any statement]

This statement allows conditional testing and selective
statement execution based on this conditional testing. The
condition, which can be a simple compare or a complex
boolean condition using AND, OR and NOT, is evaluated
and if it is true, the statement following the THEN is
executed. If the condition is false and there is an ELSE
clause, it will be executed. If no ELSE clause is present
and the condition is false, the next numbered statement
will be executed. The statements contained in the THEN or
ELSE clause may be any valid statement including another
IF. If the statement in the THEN or ELSE clause is a
GOTO, the GOTO is optional (only a statement number is
necessary).

A=0 : B=1

IF A=0 OR B=@ THEN PRINT "YES"” ELSE
PRINT "NO"

YES

IF A AND B THEN PRINT "YES" ELSE
PRINT "NO”

NO
(Note: This is a pure boolean operation.
See Boolean Operators.)

IF A>2 THEN PRINT "YES" ELSE IF B=1
THEN PRINT "B IS ONE " ELSE PRINT
"NO”

B IS ONE

Example:

ON ERROR

Format: 10 ON ERROR (str variable1, str variable?2)
any statement

The ON ERROR statement is used to give the user's
program first access to any error detected by Business
BASIC. Previous versions of Maxi-BASIC would terminate
execution upon detection of any error. If Business BASIC
detects any type of error a check will be made to see if an
ON ERROR statement has been encountered. If so, the
statement number at which the error occurred will be
placed in str variable1, an error message will be placed in
str variable2, and control will be passed to the statement
contained in the ON ERROR. Control is always passed to
the statement specified in the last ON ERROR statement
executed. If no ON ERROR statement is executed and
Business BASIC detects an error, it will terminate
execution of the program.

5 DIM E$ (11)

19 ON ERROR (L$,E$) GOTO 2000

20 LET X=50/0

3@ PRINT X

43 STOP

2008 PRINT “A ":ES$;” error occurred
in line # ".L$

2010 END

RUN

A DIVIDE ZERO error occurred in line # 20

Example:

ON . .. GOSUB

Format: 1@ ON expr GOSUB statement number1,
statement number?2, . statement number n

The ON . . . GOSUB statement is used to transfer control
to one of several statements in a program dependent upon
the value of expr. The linkage is also established to allow
subsequent transfer back to the statement following the
ON ... GOSUB (using a RETURN). The value of expr must
be an integer greater than zero. If the value of expr is one,
control will be passed to the first statement number
named. If the value of expr is two, control will be passed to
the second statement number. Likewise, if the value of
expr is n, control will be passed to the nth statement
number. If the value of expr is greater than n, an error will
be generated.

Example: 10 ON X GOSUB 30,40.50,60
Control will be passed to:
statement 3@ if X is one
statement 40 if X is two
statement 50 if X is three
statement 60 if X is four
ON ... GOTO

Format: 1@ ON expr GOTO statement number1,
statement number2, . . . statement number n

The ON . . . GOTO functions exactly the same as ON . ..
GOSUB, except that ON . .. GOTO does not establish the
linkage necessary for a RETURN. Otherwise the two
statements are equivalent. The value of expr is checked
and control is transferred to the appropriate statement
number.

Example: ON X GOTO 30, 40, 50. 60

RETURN

Format: 168 RETURN ([variable}

The RETURN statement is used to transfer control back to
the statement following the last executed GOSUB or ON . .
. GOSUB. It is also used to transfer control back to the
program after execution of a user function call. The
optional variable name is used only with the latter type,
and indicates the value to be sent back to the program (see
"User Defined Functions”). Control may be passed to the
same subroutine (via a GOSUB or ON . . . GOSUB) from
several places in a program. The RETURN statement will
be able to correctly identify the point from which control
was transferred, and return control to that point.

Example: 10 GOSUB 500
20 PRINT "LINE 20"
30 GOSUB 500
40 PRINT "LINE 40~
50 STOP
5@ PRINT "LINE 500"
518 RETURN
RUN
LINE 500
LINE 20
LINE 500
LINE 40
STOP IN LINE 500

STOP
Format: 18 STOP

The STOP statement terminates execution of a program.
The message "STOP IN LINE xxx" is then displayed (if the
STOP is not the last line of the program) where xxx is the
line number of the statement following the STOP. The
program may be continued after execution of a STOP by
typing CONT.

Example: 1090 STOP

TRACE START
Format: 10 TRACE START [LINE]

The TRACE START statement is used to instruct Business
BASIC to list each statement on the terminal device before
it is executed. This statement facilitates debugging of the
user’'s programs. If the option LINE is specified, only line
numbers are printed.

TRACE STOP
Format: 1@ TRACE STOP

The TRACE STOP statement instructs Business BASIC to
terminate listing of statements initiated by a TRACE
START.

General Input/Output Statements

CURSOR
Format: 1@ CURSOR expr1 [,expr2]

The CURSOR statement is used to position the cursor of
the TV-64 controller at a specified location. If only expr1 is
present it may have a value of zero through 1023. The TV-
64 display is then treated as a single dimensioned array
and the cursor placed at the indicated position. If expri
and expr2 are present, exprl may have a value of zero
through fifteen and expr2 may have a value of zero
through sixty-three. The TV-64 display is then treated as a
two dimensional array and the cursor placed at the
indicated position. The value of expr1 indicates the desired
row and the value of expr2 indicates the column desired.

10 CURSOR 3,15
20 CURSOR 521

Example:

ENTER
Format: 10 ENTER expr,str variable,variable

The ENTER statement is used for timed input of data from
the keyboard. Expr indicates the number of tenths of
seconds to await input. Str variable name indicates the
string variable in which to place the incoming data.
Numeric variable name indicates the variable in which to
place the number of tenths of seconds actually used in
completing the input. ENTER will transfer control to the
statement following the ENTER after one of three events
occurs. First, control is transferred if the input is not
completed within the allotted time. In this case, the
numeric variable will be set to zero. Second, control is
transferred if a carriage return is entered. In this case the
numeric variable will contain the time used. Finally, control
will be transferred if the number of characters entered is
equal to the dimensioned size of the str variable name. In
this case the numeric variable will contain the time used.
Note that in the final method. no carriage return is
required. It is useful for controlling maximum input length.

Example: 18 ENTER 50,A$.N
IMAGE
Format: 10 IMAGE mask1 mask2 mask3 . . . maskn

The IMAGE statement provides the output format to be
used for variables and constants in a PRINT USING
statement. The first value in the PRINT USING uses
mask1, the second value uses mask2 and so on with the
nth value using maskn. The masks are made up of
combinations of the following characters:

is a replacement character, i.e.. in the resulting
output, a character of a variable will replace the #.
is used to indicate placement of the decimal point
in the resulting output.

$ is used to indicate that a dollar sign is to be placed
to the immediate left of the field.

+ is used to indicate desired output of a sign,
whether positive or negative, with a numeric
variable

- is used to indicate output of a minus sign for

negative numeric variables and suppression of

plus signs.

is used to indicate output of a carriage return and

line feed.

is the replacement character for exponents in

scientific notation.

; is used to separate masks if you do not want
space(s) printed between values. It has no effect
on the resulting output.

String constants may also occur within the IMAGE
statement. Spaces in the IMAGE are treated as literal
spaces and need not be quoted.

Example: 10 X=15: A$="Barrels”
20 PRINT USING 3@:X,A$
30 IMAGE "Qty on hand is "####.##
HUHHHHHSH
RUN

Qty on hand is 15.0Q Barrels

INPUT and INPUT1

Format: 10 INPUT[1] [str constant,] variable1, variable2,

. variable n

The INPUT statement is used to assign values, obtained
from the keyboard, to the named variables. The variables
may be string or numeric. If present the str constant will be
printed on the terminal as a prompt. If no str constant is
present, a “?" will be used. The INPUT1 statement is
identical to the INPUT except that INPUT1 will suppress
echoing of the carriage return/line feed at the end of the
user’s input.

10
20

INPUT A X$
INPUTt B,Z$

Example:

During execution of an INPUT statement, the user may
provide multiple values on the same line by separating
them by commas. Note, however, that the value assigned
to a string variable is not terminated by a comma, but a
carriage return. If the user gives fewer values than required
to satisfy the INPUT statement, the prompt "??" will
appear.

Example: 10 DIM A$(15)

20 INPUT X,A$Y
3@ PRINT X,A8$Y
RUN
?723.test,45 (typed by user)
7793 (typed by user)
23 test, 45 93

KEYIN

Format: 10 KEYIN str variable

The KEYIN statement is used for entry of single key data
entries. The value of any key pressed will be placed in the
string variable named. This statement differs from INPUT
in that data from any key will be placed in the variable, and
no echo to the current output device is provided. INPUT
does not allow entry of certain keys (for example, carriage
return).

ouT
Format: 18 OUT expr1, expr2

The OUT statement is used to output a specific value to a
particular port. Expr1 indicates the port number and expr2
indicates the value. Expr1 and expr2 may have a value of
zero through 255.

Example: 10 OUT 5,200

PRINT

Format: 1@ PRINT [format string;] expr1, expr2, ... exprn
or 10 # [format string;] exprl, expr2, . . . exprn

The PRINT statement is used to output values to the
terminal. The # sign may be used in place of the word
PRINT. The expressions may be string or numeric. If the
expressions are separated by commas, the values will be
printed in eight fields of eight characters. For expressions
separated by a semicolon, a space precedes a numeric
expression; no space precedes a string expression. If a
value will not fit on the current output line, it will be placed
on the next line. Output of the values is in the default
format, unless formatting is specified. The default format is
initially free format. A format string may appear anywhere
in the PRINT statement and begins with a % character. A
format string is made up of optional format characters
followed by format specifications The format characters
are:

C which places commas to the left of the
decimal as needed.

$ which places a dollar sign to the left of the
value.

VA which suppresses trailing zeros.

? which makes this format string the default

format.

Valid format specifications are:

nFm Floating point format. The value is printed in
an n character field with m digits to the right
of the decimal point.

l Integer format. The value is printed in an n
character field. (An error will occur if a non-
integer value is used.)

nEm Scientific format. The value is printed in an n

character field with m digits to the right of the
decimal point in scientific notation (i.e, a
mantissa and exponent).

(Note: In each format specification the n character field
must include any commas and/or any dollar sign.)

Values will be rounded if necessary to fit the format
specification.

X=1234.5609
Y=5678.9035
PRINT X.Y
1234.5609

XY
1234.5609
PRINT X:Y
1234.5609 5678.9035
PRINT %7F2;X
1234.56

PRINT %C8F2;X
1,234.56

PRINT %11E5;X
1.23456E+03

X=1234

PRINT %C$61;X
$1,234

Example:

5678.9035

5678.9035

PRINT HEX
Format: 18 PRINT HEX str expr

The PRINT HEX statement is used to output the value of
the string expression in hexadecimal format. Each
character of the string expression is converted to its
corresponding two-character hexadecimal code and sent
to the terminal device.

A$="10AZ"
PRINT HEX A$
3130415A

Example:

HEX may be intermixed with other data to be printed, for
example when examining packed data fields.

Example: X=314.159

PACK (###.##) B$ FROM X
PRINT "PACKED DATA: ": HEX B$
PACKED DATA: 314150

PRINT USING

Format: 10 PRINT USING statement number; expr1,

expr2, . . . exprn

or 10 PRINT USING str variable; expr1, expr2,

. exprn

The PRINT USING statement is used to provide formatted
output of data. The statement provides a list of
expressions, numeric or string, the value of which is to be
PRINTed using the masks provided by the IMAGE
statement referred to by the statement number. Optionally,
the masks may be contained in the string variable referred
to by str variable. A ”;” may be used as the last character
of a PRINT USING statement to suppress the carriage
return at the end of the output line.

10
20
30

DIM B$(50@)
X=15 A$="barrels"
BS="##H##H HHHHRHRHH
HHHH HHE HHESRBERE

40 PRINT USING BS;
“QTY ON HAND IS”, X.A$
RUN

QTY ON HAND 1S

Example:

15.00 barrels

File Statements

CLOSE
Format: 1@ CLOSE (expr, variabie)

The CLOSE statement is used to disassociate a logical file
number from a physical file, thus, allowing the logical file
number to be assigned to another physical file. Expr
indicates the logical file number to be CLOSEd. if the file
did not exist at OPEN time, an entry will be placed in the
directory of the tape on which the physical file is located.
After execution of the CLOSE, the variable named contains
a status code. (See Appendix A.)

Example: CLOSE (4,E)

(Note: Files are NOT automatically CLOSEd upon
termination of the program. This allows one program to
pass an open file to another.)

GET

Format 1@ GET (expr1, variable, str variable, expr2
{.expr3])

The GET statement is used to retrieve a record from the
specified logical file. Expr1 indicates the logical file
number. Expr2 indicates the record number within the file
to be retrieved. Note that the record number is not the
hardware block id number used by PHIMON, but rather a
logical record number. Record numbers are specified
relative to the beginning of the named file. This frees the
user from concern with hardware block id’s. The first
logical record number in a file is record number zero. The
contents of the specified record are placed in the indicated
str variable. The length of the string variable is set to the
smallest of the following values:

the record size
the dimensioned size of the string
the value of optionai expr3

A status code is placed in the named variable after
execution of the GET. (See Appendix A))

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
RUN

THIS IS A DATA RECORD
THIS 1S

THIS IS A D

DIM A$(256),F$(8)
F$="TEST.DA”+CHR$(0)
OPEN (0,E,F$.3,1,1)

IF E>1 THEN STOP
A$="THIS IS A DATA RECORD"
PUT (@.E.A$.0)

IF E THEN STOP

GET (0.E.A$.0)

IF £ THEN STOP
PRINT A$

GET (0.E.A$.0.7)

IF E THEN STOP
PRINT A$

UNDIM A$

DIM A$(11)

GET (0.E.A$.0)

IF E THEN STOP
PRINT A$

CLOSE (0.E)

Example:

-10-

OPEN

Format: 10 OPEN (expri, variable, str variable, expr2,
expr3 [.expr4])

The OPEN statement is used to associate a physical file
with a logical file number. Expr1 indicates the logical file
number to be used. The valid logical file numbers are zero
through nine. Up to ten files may be in use at one time;
however, only one output or input/output file may be in
use on a given physical tape drive at one time. The string
variable contains the name of the file including the
PHIMON extension (see "File Names and Extensions” in
part 2 and "File Name Extensions” in Appendix A of the
PHIMON manual) plus an ASCII null or CHR$(@). Expr3
indicates the physical tape drive in which the file will be
used. Valid tape drive numbers are zero through three. The
type of file is indicated by expr2. The types of files are:

Type: 1 Output file. Records may only be PUT to
this file. It must not already exist on the
tape mounted in the indicated drive.
input file. Only GET's may be issued to
this file. It must already exist on the tape
mounted in the indicated drive.
input/output file. GET's and PUT's may
be issued to this file. No assumption is
made as to whether or not the file exists
on the tape mounted in the indicated
drive.

Type: 2

Type: 3

The optional exprd indicates the number of records in the
file. For input-type files it is ignored. For output-type files a
check is made to determine if sufficient space exists to
establish the file. If not, a particular status code (see
Appendix A) is placed in the named variable. For
input/output files that already exist at the time the OPEN is
executed, no action is taken. For input/output files that do
not already exist, a check is made to verify that the tape
has sufficient space. If no file size is specified for output
files or input/output files that do not already exist, a
default value equal to the maximum available free space on
the tape is assumed. (Note that for files OPENed in this
manner the file size will be adjusted when the file is
CLOSEd to reflect the actual number of records used.) A
status code is placed in the named variable after execution
of an OPEN statement. If the requested file name is not
found in the directory, a value of 1 is placed in the named
variable. For input-type files this is an error. For other
types of files it serves as a warning to let the user know
that the file has not previously been created. (See
Appendix A))

Example: DIM F$(8)
LET F$="TEST.DA"+CHR$(®)
OPEN (@,E,F$,1,2)
PURGE

Format: 1@ PURGE (expr,variable)

The PURGE is used to CLOSE a file and delete the file's
name from the directory on its associated tape. The logical
file number. indicated by expr, is disassociated from the
physical file, just as in a CLOSE. A PHIMON delete is then
issued to remove the file name entry from the directory. A
status code is then placed in the named variable.

Example: PURGE (Q,E)

PUT

Format: 16 PUT (expri, variable, str variable, expr2
[.expr3])

The PUT statement is used to place a record on the
specified file. Expr1 indicates the logical file number. The
contents of the string variable are placed into the record
number indicated by expr2. Optionally, expr3 indicates the
number of characters of the string variable that are to be
placed in the file. Initially, records must be put into a file
sequentially. As an example, record number five must
already exist in the file before a PUT to record six can take
place. (Note: The authors have been using random GET’s
and PUT's to a file after it has initially had blank records
written into it. Further, we have also been using an update-
in-place scheme, i.e., multiple PUT's to the same record,
with no detrimental results. The user is cautioned that
write errors might cause subsequent records to be lost. It
is therefore advised that suitable backup procedures be
instituted for files used in this way.)

Example: 10 DIM A$(256),F$(8)
20 F$="TEST.DA"+CHR$(®)
30 OPEN (0,EF$.312)
40 IF E>1 THEN STOP
50 A$-"THIS IS A DATA RECORD"
60 PUT (@.E.AS$.0)
70 IF E THEN STOP
80 PUT (0.EAS$17)
90 IF E THEN STOP
100 GET (0.EA$.0)
110 IF E THEN STOP
120 PRINT A$
130. GET (0.E.A$.1)
140 IF E THEN STOP
150 PRINT A$
160 CLOSE (0. E)
RUN
THIS IS A DATA RECORD
THIS IS

REWIND
Format 10 REWIND (expr, variable)

The REWIND statement is used to physically position the
tape to the beginning of the logical file specified by expr. A
status code is then placed in the named variable.

Example: REWIND (0.E)

Functions

The purpose of functions in Business BASIC is to allow the
programmer to use implicit subroutine access within most
statements. In other words, most references to a variable
may be replaced with a reference to a subroutine and the
value returned by that subroutine is used in the execution
of the statement. Two types of functions are available in
Business BASIC: system functions and user defined
functions.

-11-

System Functions

The system functions are used by replacing the reference
to a variable in most statements with the name of the
desired function followed by a parameter enciosed in
parentheses. Business BASIC will execute the desired
function and the result returned by the function will be
used in the statement.

X=24.56

PRINT X,INT(X)
24.56 24
Y=INT(X)+5
PRINT Y

29

Example:

The system functions available in Business BASIC are:

ABS
Format: ABS(expr)

The ABS function is used to obtain the absolute value of
the expr.

Example: X=-354
PRINT ABS(X)
354

ASC
Format: ASC(str variable)

The ASC function is used to obtain the numeric value of
the binary bit pattern contained in the first character of the
indicated string.

Example: A$="3"
PRINT ASC(A$)
51
A$="m"
PRINT ASC(AS%)
109
CALL

Format: CALL(expr1 [.expr2))

The CALL function 1s used to pass control to a machine
language subroutine. Expr1 indicates the address of the
machine language subroutine to be CALLed. The value of
optional expr2 is converted to an integer and placed in the
DE register pair before the machine language routine is
executed. The machine language routine should place a
value, to be returned to the main program. in the HL
register pair. This value is then returned to the statement
which referenced the CALL function.

PRINT CALL(2051.300)

600

(This would place the hex value 012C in
the DE pair and then execute a fictitious
machine language routine at hex address
@8@3. The fictitious routine shifted the
number in the DE left one bit and placed
the result, hex @258, in the HL pair. This
value was then returned to the PRINT
statement.)

Example:

CHR$
Format: CHR$(expr)

The CHRS$ function is functionally the opposite of the ASC
function. It obtains the string character represented by the
binary bit pattern equal in value to the expr.

Example: PRINT CHR$(51)
3
PRINT CHR$(109)
m
cos

Format: COS(expr)

The COS function is used to obtain the cosine of the expr.
Expr must be expressed in radians.

Example: PRINT COS(.234)
9727467
EXAM
Format: EXAM(expr)

The EXAM function is used to obtain the value of the
contents of a particular memory location. Expr indicates
the address of the location desired.

PRINT EXAM(2)
224

Example:

EXP
Format: EXP(expr)

The EXP function is used to obtain the value of e raised to
a specified power. Expr indicates the desired power to
which e is to be raised.

PRINT EXP(3)
20.085535

Example:

FREE
Format: FREE(@)

The FREE function is used to obtain the number of unused
bytes remaining in memory. A parameter of zero is always
used.

PRINT FREE(Q)
5825

Example:

HEX
Format: HEX str expr

There is one special data conversion function, HEX. HEX
will take the specified string expression and assume that
the data contained therein is pairs of hexadecimal digits.
These digits will be converted into true hexadecimal and
placed in the variable named. If the variable is numeric,
two hex pairs are converted. If the variable is a string, any
number of hex pairs may be converted.

A$=HEX "D4C5D3D4C9CECT7"
PRINT A$

TESTING

X=HEX"D875"

PRINT X

55413

Example:

INP
Format: INP(expr)

The INP function is used to obtain the data available from
the specified input port. Expr indicates a port number to
which a hardware input instruction is to be issued.

Example: PRINT INP(Q)

13

INT
Format: INT (expr)

The INT function is used to obtain the integer value of the
specified expr. Note that the value returned is the next
smaller integer number.

X=23.45
PRINT INT(X)
23
X=-12.34567
PRINT INT(X)
-13

Example:

LEN
Format: LEN(str variable)

The LEN function is used to obtain the length of the
specified string variable. The value returned is a count of
the actual number of characters currently in the specified
string.
Example: DIM A$(15)
A$="TEST"
PRINT LEN(AS)
4
A$=A$+"ING"
PRINT LEN(AS)
7

LOG
Format: LOG(expr)

The LOG is used to obtain the natural logarithm of the
specified expr.

Example: PRINT LOG(23)

3.1354941

RND
Format: RND(@)

The RND is used to obtain a psuedo random number with
a value between zero and .99999999. The parameter zero is
always used.

Example: PRINT RND(Q)

-12- 101234912

SGN
Format: SGN(expr)

The SGN function is used to obtain an indication of the
sign of the specified expr. If the value of expr is positive, a
value of one is returned. If the value of expr is zero, a value
of zero is returned. If the value of expr is negative, a value
of minus one is returned.

X=10 : Y=0 : Z=-15
PRINT SGN(X),SGN(Y),SGN(Z)
1 0 -1

Example:

SIN
Format: SIN(expr)

The SIN function is used to obtain the sine of the specified
expr. Expr must be expressed in radians.

PRINT SIN(23)
-.8462207

Example:

SQRT

Format: SQRT (expr)
or SQR (expr)

The SQRT function is used to obtain the positive square
root of the specified expr.

Example: X=81
PRINT SQRT(X)
9
STR$

Format: STR$(expr)

The STR$ is used to obtain a string containing the
character representation of expr.

X=23.50
A$=STRS$(X)
A$=A$+" each”
PRINT A$
23.5 each

Example:

TAB
Format: TAB(expr)

The TAB function is used in print statements to specify
that output is to begin at a particular location specified by
expr.

PRINT TAB(5); "ABC"
ABC

Example:

VAL
Format: VAL(str expr)

The VAL format is functionally the opposite of the STR$
function. It is used to obtain the numeric value of the
characters of the string expr.

-13-

AS$-"23.7865"
X=VAL(A$)+20
PRINT X
43.7865

Exampie:

User Defined Functions

There are two types of user defined functions: single
statement and multiple statement functions. Usage of both
types is the same as the usage of system functions.
Definition of functions is accomplished by use of the DEF
statement.

DEF

Format: 1@ DEF FNvariable (variable 1, variable 2,
. variable n)

16 DEF FNvariable (variable1, variable2,
. variable n)= expr

or

The named variable may be a numeric or string variable.
The first format is for muitipte statement functions, the
second is for single statement functions. The execution of a
single statement function call evaluates the expr on the
right of the equal sign and returns the value of that expr.
The execution of a multiple statement function call
executes the statements contained in the function
definition and returns the value specified in the RETURN
statement. The variables used as parameters are “local” to
the function definition. That is, any change in the value of
these variables within the function definition is not
reflected within the main program (see example below
paying particular attention to the variable Y).

Y=45

PRINT FNA(Y,5),FNB(Y)
PRINT Y

STOP

DEF FNA(Y,X)

Y=Y+3

X=Y¥5

80 RETURN X

90 FNEND

100 DEF FNB(Z)=2% 20
RUN
240
45
STOP IN LINE 5@

10
20
30
40
50
60
70

Example:

900

FNEND
Format: 10 FNEND

The FNEND statement is used to indicate the end of a
multiple statement function definition.

Advanced PRINT Usage

Control Characters

Business BASIC has incorporated certain control
characters to provide special output functions. Any time
these control characters are encountered in a PRINT
statement the associated function will be performed. These
characters are:

CTRL-H - ASCII Backspace - Move screen cursor left
CTRL-I - ASCIl Horizontal Tab - Move screen cursor
right

CTRL-K - ASCII Vertical Tab - Home screen cursor
CTRL-L - ASCII Form Feed - Clear screen
CTRL-N - ASCHl Shift Out - Carriage return and line
feed

CTRL-Q - ASCIl Device Control 1
cursor down

CTRL-R - ASCII Device control 2 - Move screen cursor

up

- Move screen

The functions of these characters are suppressed during a
LIST. A CTRL-M will generate a carriage return and line
feed during execution and LIST.

Printer Functions

The printer driver provided with Business BASIC offers
increased utility of the Digital Group printer. Several
options are available with this driver. The options are
selected by printing a CTRL-G followed by a one-byte
option code.

Valid option codes are:

7€ Double width off
} 7D Double width on
: 7C Proportional spacing off
{ 7B Proporticnal spacing on
z 7A Linefeed off
y 79 Linefeed on

All other characters are taken to be character size
parameters. DO NOT use hex 13, 14, 17, or 18 as character
sizes!! When listing a program, any control character is
printed as its uppercase equivalent followed by a block.

Example: 10 PRINT "NORMAL SIZE PRINT"
20 PRINT "CTRL-G} DOUBLE WIDTH
PRINT"
MORMAL. SIZE PRINT
OOLIERE O XTIV P IsdT

-14-

Output Device Selection

Business BASIC has the capability of selecting the device
or devices to which output from PRINT statements is to be
sent. The devices currently implemented are the TV-64
display and the printer. To cause output to be sent to the
TV-64 display, an OPEN (CRT, variable) statement is
executed. To cause output to be sent to the printer an
OPEN (PRINTER, variable) statement is executed. To
suspend output to the TV-64 disptay a CLOSE (CRT,
variable) is executed. Likewise, to suspend output to the
printer a CLOSE (PRINTER, variable) is executed. When a
program is executed, output is initially assumed to be sent
to the TV-64 display. The variable specified in the OPEN or
CLOSE for CRT or PRINTER currently has no function; it
is implemented for future expansion.

Appendix A

Fite 1/0 Error Codes

The following are the status codes returned by the file statements:

00
@1
82
@3
a4
@5
a7
@8
@9
10
11

12
14

No errors.

File not found. File does not exist on this tape.

Not enough free blocks exist on this tape.

Duplicate file exists on this tape.

File has not been opened.

End of file. Or logical record id is greater than file size.

File number already OPENed.

invalid file number.

System error.

10 mismatch. (GET on output-type file or PUT on input-type file.)
Invalid file type.

Too many output files on one drive.

An output-type file was closed, but no records were written to it. The
file is closed, but no directory entry is created.

The following codes indicate PHIMON errors (see Appendix C in the PHIMON

manual):

257
258
259

Equivalent to error 1 - CRC error
Equivalent to error 2 - Block not found
Equivalent to error 3 - Tape end or jam

-15-

Appendix B

Program Installation

The Business BASIC program is distributed on one cassette tape, organized as follows:

Side 1 - Contains the Business BASIC program as a PHIMON file named

"BASIC. GO".

Side 2 - Contains the Business BASIC program in audio form (1100 baud - Suding

format). This form can be read using the PHIMON "READ"” command, and is
supplied as an alternate to Side 1. An audio cassette recorder is required to
read this side of the tape.

An operational PHIMON system is required to prepare Business BASIC for use. The
following procedure is used to install the program, and assumes familiarity with use of
the PHIMON system.

1.
2.
3.

Start up the PHIMON system, using the PHIMON ROM ("PZB").

Apply the recommended patches to PHIMON described in Appendix D.

Using the PHIMON "PIP"” program, copy the file on Side 1 of the distribution

tape to the PHIMON system tape or to another tape used for program storage.

Note: Itis recommended that the distribution tape not be used for anything
other than a master copy of the program. Working copies should be
made as required, using this procedure.

Execute Business BASIC and verify the copy performed in Step 3 by entering

the command "RUN#n BASIC"”, where n specifies the tape drive number

containing the program.

If difficulties are encountered in reading Side 1 of the distribution tape, the following
alternate procedure can be used. (Steps 1 & 2 are the same.)

3.
4.
5.

Note:

Prepare the audio cassette recorder with Side 2 of the distribution tape.
Enter the command "READ 1000-105377" and read in the audio file.

Save the program on the PHIMON system tape or on another tape used for
program storage by entering the command "SAVE#n BASIC 1-105"5000",
where n specifies the appropriate tape drive number.

Execute Business BASIC and verify the above steps by entering the command
“RUN#n BASIC", where n specifies the tape drive number containing the
program.

When RUNning Business BASIC, automatic execution of a source program
may be effected by specifying a start address of 1270 (rather than 5000) in the
“SAVE"” command. The program to be executed must be saved along with
BASIC by using a PHIMON "SAVE” command, not a BASIC "SAVE"
statement.

If difficuities were encountered in installing the PHIMON file
(Side 1). please let us know by responding on the Reader's
Comments Form at the back of the manuatl.

-16-

Appendix C

Conversion of MAXI-BASIC Source Programs

The following procedure can be used to convert MAXI-BASIC source programs to
Business BASIC. It is assumed that MAXI-BASIC has been previously installed and is
operating under PHIMON. (Refer to "Getting Started with PHIMON" in the PHIMON
documentation for more information.)

1.

2.

LOAD MAXI-BASIC, then the source program to be converted.
START execution of MAXI-BASIC (required to set internal pointers).

WRITE to an audio cassette, starting at 863253 through the end of the source
program. The end point can be determined by examining 362140 for location and
062141 for page.

LOAD Business BASIC.
READ from the audio cassette generated in step 3, starting at location 105131.
START execution of Business BASIC.

Using the SAVE statement in the Business BASIC language (not PHIMON), save
the source program.

-17-

Appendix D

PHIMON Considerations

It is suggested that the following patches be applied to the PHIMON system being used
with Business BASIC. Refer to the PHIMON documentation for detailed information on
applying patches using the DTO command.

Location Data Explanation

345354 270 Compensates for a tape
346 overrun problem which

346270 876037 may cause erroneous 258
315150345 error codes.
311

340034 315361343 Fixes a potential

343361 076200 printer problem which
323003 can develop if RESET
257 is pressed while a
323003 line is being printed.
041104
341
311

340364 373004 Fixes a problem with

340371 372000 use of the rubout key.

-18-

READER’S COMMENTS

The Digital Group would like to improve the quality and usefulness of this publication. To do this
effectively, we need user feedback — your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manuai? If so, specify by page.

How can this manual be improved?

Other comments.

NAME: DATE:

STREET:

CITY: STATE: ZIP:

TELEPHONE NUMBER:

Please send this form to:

SOFTWARE DEVELOPMENT/BUS-1
DIGITAL GROUP INC.

P. O. BOX 6528

DENVER, COLORADO 80206

