THE DIGITAL GROUP

DOUBLE DENSITY DISC CONTROLLER SYSTEM MANUAL

(C) 1979 BY

THE DIGITAL GROUP

"Reproduction in any part or form of the contents of this document or its accompanying cassette tape or disk, except for the personal use of the original purchaser, is strictly forbidden without the expressed written consent and permission of The Digital Group, Inc."

TABLE OF CONTENTS

Section		Page
СНАРТЕТ	1 INTRODUCTION	. 1
CHAILER		
CHAPTER 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 CHAPTER 3.1	2 ASSEMBLING THE CONTROLLER INTRODUCTION PRELIMINARY INSPECTION RESISTOR INSTALLATION INTEGRATED CIRCUIT SOCKET INSTALLATION CAPACITOR INSTALLATION REMAINING COMPONENT INSTALLATION BOARD ADDRESS JUMPER INSTALLATION HEAD LOAD MOTOR-ON JUMPER FINAL INSPECTION AND CLEANING 3 TESTING/TROUBLESHOOTING INTRODUCTION	2 2 3 3 4 4 6 6 7 8 8 8 9 9 10 10
3.2 3.4 3.5 3.6 3.7 3.8	GENERAL- POWER SUPPLIES AND CAPACITORS	. 10 . 12 . 12 . 14 . 16
CHAPTER 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 7.13	THEORY OF OPERATION INTRODUCTION PORT LABEL DEFINITIONS POWER-ON RESET AND LOW VOLTAGE CIRCUIT ADDRESS DECODE AND CPU I/O BUFFERS WAIT LOGIC SEL PORT LOGIC WRITE PRECOMPENSATION CIRCUIT DELAY AND READY LOGIC CONTROLLER CLOCK CIRCUIT VCO PHASE LOCKED LOOP DISC I/O BUFFERING POWER SUPPLIES INTERRUPTS	. 26 . 26 . 27 . 28 . 30 . 32 . 35 . 36 . 38 . 39 . 42
CHAPTER 5.1 5.2	5 1791 PRODUCT SPECIFICATION	. 46
CHAPTER 6.1 6.2	6 SAMPLE DRIVER PROGRAM	. 50
CHAPTER 7.1 7.2	7 SAMPLE FORMAT PROGRAM	. 60

TABLE OF CONTENTS

Section			Page
APPENDIX	A	PARTS LIST BY VALUE	66
APPENDIX	В	PARTS LIST BY LABEL	69
APPENDIX	С	DRIVE ATTRIBUTE SOCKET DEFINITION	72
APPENDIX	D	BOARD ADDRESSING	73
APPENDIX	E	ONE SHOT TIMINGS	74
APPENDIX	F	WRITE PRECOMPENSATION TIMING DIAGRAM	75
APPENDIX	G	WAIT LOGIC TIMING DIAGRAM	76
APPENDIX	Н	SCHEMATIC	77
APPENDIX	I	PARTS PLACEMENT DIAGRAM	78
APPENDIX	J	SOFTWARE COMPATIBILITY (OLD VS NEW)	79
APPENDIX	K	APPLICATION NOTE #1	80
APPENDIX	L	APPLICATION NOTE #2	81
APPENDIX	M	APPLICATION NOTE #3	82
APPENDIX	N	APPLICATION NOTE #4	83
APPENDIX	0	APPLICATION NOTE #5	84
APPENDIX	P	APPLICATION NOTE #6	85
APPENDIX	Q	APPLICATION NOTE #7	86
APPENDIX	R	APPLICATION NOTE #8	87
APPENDIX	S	APPLICATION NOTE #9	8.8
APPENDTY	т	APPLICATION NOTE #10	90

CHAPTER 1

INTRODUCTION

The DIGITAL GROUP DOUBLE DENSITY CONTROLLER MANUAL is a comprehensive set of documentation that allows the user to Assemble, Test, Troubleshoot, and Install the Board in his system. Each section of the manual contains ordered concise instructions for getting the user up fast and reliably.

An Installation Manual is included for the user who bought the board assembled. All he needs to do is consult the Installation Manual for getting the board up.

For the kit builder, the Assembly and Testing sections are provided. Along with the Installation Manual, the kit builder will find the Controller board easy to build.

Also included in the documentation is the Hardware Monitor Manual and Cassette. This Monitor is very powerful in aiding the user to Test and Diagnose problems that might occur in assembly and testing. The Assembled Board purchaser might wish to perform some of the Diagnostics provided in HMON to continue to monitor the reliability of the System. You might think of the Diagnostics in HMON as a "Memory Test" for the Controller.

CHAPTER 2

ASSEMBLING THE CONTROLLER

2.1 INTRODUCTION

Estimated Construction Time: 4-8 Hours

To build the Digital Group Dual Density Floppy Card, you will need the following tools and equipment:

Fine tipped low wattage soldering iron (25 watt is ideal) Solder 60/40 RESIN core wire solder, 20-30 gauge DO NOT USE ACID CORE SOLDER (SEE OUR WARRANTY POLICY) Diagonal cutters, small micro-shear preferred Long-nosed pliers flux remover or Alcohol small brush

Volt-Ohmmeter (20K Ohms per VOLT or better) 15 Mhz Dual Trace Triggered Sweep Oscilloscope

Before you start to assemble the board, take a little time to inspect the P.C. board. Check to see if there are any shorts on the top side of the board under where the Integrated Circuit sockets will be placed. Once the Sockets are in place, it will be very difficult to find shorts in this area. Also, read through the entire assembly procedure before starting to familiarize yourself with the proceedure.

2.2 PRELIMINARY INSPECTION

- () Remove all parts from their bags and plastic rails.
- () Sort the components into individual values. (cupcake trays are good for this)
- () Verify that all parts are there by checking them off of the PARTS LIST in APPENDIX A
- () Remove the Parts Placement Diagram from APPENDIX I and place it conveniently in front of you.

2.3 RESISTOR INSTALLATION

NOTE: All resistors are mounted on .4 inch centers. (If you have a lead bender, by all means use it.)

- () Insert the following Resistors into the board:
 - () R42 47 Ohm (yel-vio-blk)
 - () R30,R31 120 Ohm (brn-red-brn)
 - () R12,R13,R14 150 Ohm (brn-grn-brn)
 - () R15, R17 150 Ohm
 - () R22 270 Ohm (red-vio-brn)
 - () R25 330 Ohm (org-org-brn)
 - () Turn the board over at this time and solder in these Resistors.
- () Insert the following Resistors into the board:
 - () R33, R37 470 Ohm (yel-vio-brn)
 - () R49, R50 470 Ohm
 - () R28, R36 1k Ohm (brn-blk-red)
 - () R38 1K Ohm
 - () R9, R18, R19 2.2K Ohm (red-red-red)
 - () R20, R21 2.2K Ohm
 - () Turn the board over at this time and solder in these Resistors.
- () Insert the following Resistors into the board:
 - () R27, R34, R39 2.2K Ohm (red-red-red)
 - () R7 2.7K Ohm (red-vio-red)
 - () R44, R45 3.3K Ohm (org-org-red)
 - () R29 3.9K Ohm (org-whi-red)

	()	R43	4.7K Ohm (yel-vio-red)
	()	R46	5.6K Ohm (grn-blu-red)
	()	R6,R10	6.8K Ohm (blu-gry-red)
	()	R4	7.5K Ohm (vio-grn-red)
	()	R8	9.1K Ohm (whi-brn-red)
	()	Turn the board o	over at this time and solder in these
()	Ιr	ns∈	ert the following	Resistors into the board:
	()	R23,R24,R32	10K Ohm (brn-blk-org)
	()	R40,R41,R47	10K Ohm
	()	R48	10K Ohm
	()	R5	11K Ohm (brn-brn-org)
	()	R2	15K Ohm (brn-grn-org)
	()	R11	27K Ohm (red-vio-org)
	()	R1	33K Ohm (org-org-org)
	()	R3	820K Ohm (gry-red-yel)
	()	Turn the board of Resistors.	over at this time and solder in these

2.4 INTEGRATED CIRCUIT SOCKET INSTALLATION

If you received SAE sockets with your kit, DO NOT REMOVE the white strips located on the bottom of the socket.

() Install the following IC Sockets at this time by inserting the socket and SLIGHTLY bending two diagonally opposing corner pins outwards to hold the socket onto the board.

() IC3,IC9,IC22 8 Pin Socket
 () IC50,51,52 8 Pin Socket
 () IC53 8 Pin Socket

)	Turn	the	board	over	at	this	time	and	solder	in	the
	8	Pin	Socketa	s.							

- () Install the following IC Sockets at this time by inserting the socket and SLIGHTLY bending two diagonally opposing corner pins outwards to hold the socket onto the board.
 - () IC2, IC5, IC6, IC7 14 Pin Socket
 - () IC14, IC15, IC16 14 Pin Socket
 - () IC17, IC18, IC19 14 Pin Socket
 - () IC20, IC21, IC23 14 Pin Socket
 - () IC24,IC27,IC30 14 Pin Socket
 - () IC31,IC32,IC34 14 Pin Socket
 - () IC35,IC36,IC38 14 Pin Socket
 - () IC39,IC40,IC46 14 Pin Socket
 - () IC48,49
 - 14 Pin Socket
 - () Turn the board over at this time and solder in the $14\ \text{Pin Sockets.}$
- () Install the following IC Sockets at this time by inserting the socket and SLIGHTLY bending two diagonally opposing corner pins outwards to hold the socket onto the board.
 - () IC1,IC4,IC8 16 Pin Sockets
 - () IC10,IC11,IC12 16 Pin Sockets
 - () IC13, IC25, IC26 16 Pin Sockets
 - () IC28, IC33, IC37 16 Pin Sockets
 - () IC41,IC45 16 Pin Sockets
 - () Turn the board over at this time and solder in the 16 Pin Sockets.
- () Install the following IC Sockets at this time by inserting the socket and SLIGHTLY bending two diagonally opposing corner pins outwards to hold the socket onto the board.

DOODLI	DENOTIT DIDIEN IN	ANOAL CHILLER E. MOOLULE CO.
•		
() IC42,IC43,IC44	20 Pin Sockets
N C	TE: No 20 Pin Soci	ket will be installed in IC Position 47.
() IC29	40 Pin Socket
() Turn the board of 20 and 40 Pin	over at this time and solder in the Sockets.
2.5 0	CAPACITOR INSTALLA	TION
Ins slight	sert the following	Capacitors into the board and then bending the leads the Capacitor in place.
() Ir	nsert the followin	g Capacitors into the board:
() C10,C11,C12	50pf Silver Mica

()	C10,C11,C12	50pf Silver Mica
()	C13,C14,C34	50pf Silver Mica
()	C53	36pf Silver Mica
()	C66	180pf Silver Mica (could be marked 181)
()	C52,C74	220pf Silver Mica (could be marked 221)
()	C65	680pf Silver Mica (could be marked 681)
()	C32,C54	1000pf Silver Mica (could be marked 102)
,	١	Tunn the heard	owen at this time and solder in these

- () Turn the board over at this time and solder in these Capacitors.
- () Insert the following Capacitors into the board:
 - () C70,C73
- .01 Disc Ceramic
- () C49,C50
- .01 10% Mylar
- () C48

- .022 10% Mylar
- () C15

- .022 10% Disc Ceramic
- () Turn the board over at this time and solder in these Capacitors.

<u>.</u>			
)	to check the Parts Placem	citors into the board. Be sure ent Diagram and PC board on of the + end of the capacitors.
		() C40,C42,C43 4.7uf	Tantalum (Observe Polarity)
		() C68 4.7uf	Tantalum (Observe Polarity)
		() C9,C61,C62 10uf	Tantalum (Observe Polarity)
		() C71 10uf	Tantalum (Observe Polarity)
		() C16,C39 22uf	Tantalum (Observe Polarity)
		() C72 100uf	Tantalum (Observe Polarity)
		() Turn the board over a Capacitors.	t this time and solder in these
()	Insert the following Capa	citors into the board:
		() C1-C8 .1uf	Disc Ceramic
_		() C17-C31 .1uf	Disc Ceramic
		() Turn the board over a Capacitors.	t this time and solder in these
()	Insert the following Capa	citors into the board:
		() C33,C35-C38 .1uf	Disc Ceramic
		() C41,C44-47 .1uf	Disc Ceramic
		() C51,C55-C60 .1uf	Disc Ceramic
		() C63,C64,C67 .1uf	Disc Ceramic
		() C69,C75 .1uf	Disc Ceramic
		() Turn the board over a Capacitors.	at this time and solder in these

2.6 REMAINING COMPONENT INSTALLATION

() Insert the remaining components into the board:

CHAPTER 2: ASSEMBLING THE CONTROLLER

- () D1,D3,D4 1N4148 Diode (save the leads for later)
- () D2 1N4731A Zener Diode (.5 in. Centers)
- () L1 22uh Choke (red-red-blk) looks like 2W resistor
- () R35 5K Ohm 10 Turn Trim-Pot
- () X1 4.000 Mhz Crystal
- () Turn the board over at this time and solder in the last of the components. Be sure to solder the crystal as quickly as possible to minimize heat buildup.
- 2.7 BOARD ADDRESS JUMPER INSTALLATION
- () Using the leads saved from the 1N4148 Diodes:
 - () Form five jumper wires bent on .3 in. spacing.
- () Install the Port Addressing jumpers into the jumper pads at IC Position 47 as follows:
 - () Pin 1 to Pin 20
 - () Pin 4 to Pin 17
 - () Pin 5 to Pin 16
 - () Pin 8 to Pin 13
 - () Pin 10 to Pin 11
 - () Solder in these jumpers and trim the excess leads.
- 2.8 HEAD LOAD MOTOR-ON JUMPER

If you intend to use the Disc Controller on Mini Drives with the DSM-INT1 cabling installed OR you intend to run both Mini and Standard drives with the DSS-INT1 cabling, install the following:

() Install a small jumper wire between the pads near the 36 Pin edge connector pins 18 and 19.

2.9 FINAL INSPECTION AND CLEANING

All components that are to be soldered onto the board have been soldered in. The only parts that should be left over at this time should be the Integrated Circuits and 7 1N4148 Diodes. These parts will be installed during testing. You should now look over your work and check for obvious shorts, solder splashes and unsoldered pins. After you are satisfied that no glaring shorts or opens exist, clean the board in commercial board cleaner or alcohol.

- () Inspect the board for obvious solder shorts, solder splashes, and unsoldered pins.
- () Clean the board in commercial board cleaner or alcohol.
- () Re-inspect the board for shorts and unsoldered pins again.
- () Be sure that all solder joints are clean and SHINY.
- () RE-SOLDER any joints that appear dull in finish.
 - () Reclean the board if joints needed retouching.

You have completed the assembly phase of construction. Go to the Installation Manual now and perform any CPU modifications that are required. If you presently have a single density Controller (DSS-INT1 or DSM-INT1) and you have a spare slot on the I/O Bus, you should parallel the connections on Pins 34 and 36 of the 36 Pin edge connector to this spare slot. Some of the testing could be done with your old controller installed along with the new Double Density Controller. If this is the first Disc Controller to be installed in your system, perform all required cabling at this time. You don't need to parallel a slot if this is your first disc system. After you have installed all required modifications and cabling you should take a break. The next thing we will do is test the Double Density Controller. Proceed to the next chapter.

CHAPTER 3

TESTING/TROUBLESHOOTING

3.1 INTRODUCTION

The Double Density Disc Controller is not a difficult board to troubleshoot. The board was designed to be modular. The following tests check out each section to the degree that the section should work. Each test will also give the user the ability to check further into the circuitry should the test results be negative.

In general, if there is a problem in one section, the user should consult the theory of operation for that section to get a better idea as to where the problem lies.

3.2 GENERAL- POWER SUPPLIES AND CAPACITORS

Before power is applied to the disc controller board all of the power supply traces should be tested. This is to ensure that shorts or reversed Tantalum capacitors will not destroy the computers power supplies. NO integrated circuits should be installed on the disc controller board for this test.

- (1). With an Ohmmeter, check the +5, +12, and -5 volt power supplies with respect to ground and the other supplies. There should be no direct shorts (resistance less than 25 Ohms) to ground or any other supply. Be sure to check these measurements by reversing the leads of the Ohmmeter.
- (2). If the above test was successful, recheck the polarity of all Tantalum and Electrolytic capacitors. If there was a short between any power supply and ground or between any supply find the cause of this short before proceeding.
- (3). Insert the disc controller (less Integrated Circuits) into the computer and apply power. Check to see that there are no power supply failures. Now, just leave the disc controller inserted and the power on for about five minutes. If a capacitor was installed incorrectly it will probabily fail in this time period (it's better for it to fail now rather than when all the Integrated Circuits are installed).
- 3.3 THE POWER-ON RESET AND LOW VOLTAGE CIRCUIT

- The Power-on reset circuit will now be tested. This circuit holds the 1791 IC and the write gate inactive during power up and during a power loss. If this circuit fails to operate the controller board will not function at all. The controller board may be inserted into any I/O slot for this test.
 - (1). Install the following IC: IC34 (LM3302). Insert the disc controller board in the computer and apply power. Adjust the Computer +5 Volt supply for +5 Volts at the top of the Disc Controller card. The tolerance is + or 5%. Do NOT use the extender cards for this setting.
 - (2). Now, place the disc controller up on extender boards if you have them. Apply power again and see if the output of IC34 pins 1 and 2 are high. If not, check the +12 volt power supply and then recheck the +5 volt supply. If the +12 volt supply failed (crow-barred) check all components associated with that supply. If the +5 volt supply was low, readjust that supply and start the test all over again. Correct polarity of diodes D1 through D4 are critical to the operation of this circuit. Check to see if these diodes are installed correctly.
 - (3). Observe the output of IC34 pins 1 and 2 with an oscilloscope. During powerup, IC34 pin 2 will hold low for approximately 50 milliseconds. If this level is not present, check for shorts or bad polarity of capacitor C62. Also, the LM3302 could be bad.
 - (4). Now with the oscilloscope in place reduce the computer +5 volt supply until IC34 pin 1 goes low. Note that this voltage should be arround 4.3 volts. If this voltage is above 4.3 volts replace Zener D2 or Diode D1. If the voltage is below 4.3 volts, check or replace the Zener D2, or the LM3302. Retest if necessary. (above or below means 10% either way)
 - (5). Readjust the computer +5 Volt power supply to +5 volts as in Step 1. Now, attach one probe to the +5 Volt supply and the other to IC34 Pins 1 or 2, then cycle the AC power on and off. AC trigger the scope to when the +5 Volt supply starts to go low. Observe that the output of IC34 Pins 1 and 2 go low prior to the total loss of the +5 volt power supply. (Note that IC34 Pins 1 and 2 output goes low when the +5 Volt supply passes through 4.3 Volts.)
 - (6). Now, place one scope probe on the +12 Volt power supply. Place the other on the +12 Volt supply Pin 3 of IC34. Cycle the AC power again and note that the +12 Volt "storage" circuit comprised of C61, R42 and D4 remains charged after the standard +12 Volt supply discharges. then remove the scope probe from the +12 Volt supply and place it on the +5

Volt supply. Note also that while cycling the AC power the +5 Volt supply discharges to 0 while the voltage on IC34 Pin 3 is still above +5 Volts. The +5 Volt supply discharge rate is a function of the load of your particular system, but it should discharge in less than one second. If this is not the case, check the polarity of D4 and C61. Also be sure that the value of R42 is correct.

3.4 USING HMON/2 FOR TESTING

Most of the following tests will use the HMON/2 Hardware monitor for exercising the controller board. The user should read the HMON/2 Manual and familiarize himself with the operation of this monitor. HMON/2 has been used to adjust all the sections of the Dual Density Controller board. The only secton that the monitor can't diagnose is the Phase locked loop. It should be noted that using the INP-<port>:CON function, the user can generate a single repetitive pulse train that any "good" scope can sync to. These pulses occur at approximately a 10 millisecond rate. Use of the DELay function can extend these pulses to allow the user to trigger all of the timing elements on the board. In one of the sections we will use this technique to check all the controller to disc buffers and timing elements. When an example is given there will be no explanation of the command or how to terminate it. The user should read the rest of the test procedure and then go back to the HMON/2 Manual and reread the functions used exclusively for testing. Be sure that you know how to STOP any function that we will be using.

We will be reloading the HMON/2 cassette three or four times. If you presently have a Single density disc system or a Phideck system, you may want to load in HMON/2 at this time and save it on disk or cassette. The Double Density Controller board may be tested in the slot next to the intended slot for most of the tests. This can be accomplished by installing temporary motherboard jumpers from the intended slot to this new slot for both the Int and Wait lines. Remember, you can load HMON/2 through any operating system except for the last test, which requires you to connect the Double Density Controller to the actual disc drives.

3.5 BOARD SELECT AND GATING CIRCUITS

In this section we will test all of the address gating and port select logic. We will also test the wait logic here. The first test will check to see if any shorts exist in the output data enable and the wait enable lines. If there is a problem here, the computer will not function as the controller board will either interfear with the computers I/O bus or the Wait line. Should the user have dynamic memory, the holding of the Wait line will cause memory loss. We will next test the Input/Output gating logic to see if the

- board can be accessed. Then, the wait logic will be tested to see if the wait timeout timer and the entire wait circuit functions properly.
 - (1). Install all IC's EXCEPT the following: IC8, IC9, IC22, IC29, IC37, and IC44.
 - (2). Insert the disc controller and apply power. Check to see that all of the power supplies are operating and that no IC is getting excessively hot to the touch.
 - (3). With either a scope or a voltmeter, check the following:
 - (a). Pins 1 and 19 of IC44 are at a constant high level.
 - (b). Pin 15 of IC37 is also at a constant high level.

If either of these signals is low, there is a problem in the address select or wait logic. At this point the user should start back tracking from these pins to find the source of the problem.

- (4). Now remove power from the system and install IC's 37 and 44. (Be sure that the Wait jumper and Int jumper on the motherboard are in place)
- (5). Read in the disc diagnostic tape using the "ZE" ROM and execute the HMON/2 with option 6.

The following tests will establish whether the address decoding and wait generation logic are functioning properly.

Most of the tests will have visual outputs to the screen. You should stop with the testing and start scoping the board when your outputs do not agree with the examples.

(6). First we will see if the board responds to the computer.

Execute the following program:

:OUT-54,0:INP-54:OUT-54,377:INP-54 (cr)

The computer should respond with:

INPUT PORT 054 = 304 INPUT PORT 054 = 307

If this is the result you received, go on to step 7. If both inputs resulted in a 000, the board was not selected. Check IC's 16, 31, 33, 45. This test should have generated the strobe pulse labeled RE4 on the schematic. To aid in testing this section, re-execute the above test but place a "CON" statement at the end. This will cause the test to be repeated

at speeds a scope will sync to. If the result of the test was not 000 but something else, check the problem bits in IC's 30, 41, 42, 43 and 44.

Now we'll see if the wait logic is operable. Temporarily short pins 38 and 39 of the IC29 to ground. (Jumper IC29-39 to IC29-3 and IC29-38 to IC29-20.) (Use the hookup wire supplied.) Then try the following:

:SET-.10000 (cr) :OUT-57,0:NEX:MES-/DONE/ (cr)

Time the length of the second line above.(app 25 sec) Th

:SET-.10000 (er) :OUT-53,0:NEX:MES-/DONE/ (er)

The second test should execute about 1.5 seconds faster. If this was true proceed to step 8. If the tests ran at the same speed, there is a problem with the wait logic. Check to see if the CPU mods have been installed and their associated jumpers on the motherboard are there. If this is not the problem then read the theory of operation of the wait logic and check IC's 2, 7, 15, 17, 25, 36.

- (8) We apparently have some communication with the controller board at this time. Remove power and insert all the IC's EXCEPT IC29, the 1791.
- 3.6 DEVICE ATTRIBUTE, VCO AND CLOCK CIRCUITS

In this section we will check out the Attribute selection circuts, the Phase locked loop and the Basic 1791 clock circuit. The attribute circuit will also test some of the input/output buffer lines. Any shorts on these lines could cause problems for the 1791 IC. We will also set the free running frequency of the Phase locked loop. This adjustment is the most critical adjustment to be made and should be done carefully. Once the adjustment has been made, we will change the attributes for device 0 and check the switching of different sections of the loop. If a problem arises in this circuit, a careful examination of the rest of this circuit is in order. Finally, we will check the Basic clock frequency of the 1791 and check to see if it switches properly for each attribute.

- (1). Install the controller board on its extender boards again and reload HMON/2.
- (2). Get two of the 1N4148 diodes that were supplied and bend the leads to fit the .3" spaced socket.
- (3). Please refer to APPENDIX C on DEVICE ATTRIBUTES for the

following:

- (a). Start HMON/2 with option 6.
- (b). The following program will be run for all 4 drives. This is done by replacing the word "DATA" in the OUT-54,"DATA" with the following: 0, 1, 2, 3. In each case the user should place a diode in each of the 4 possible positions for that drive and observe the results on the screen.
- (c). Run the following program for each drive:

:OUT-54, DATA: INP-54: CON (cr)

The results obtained should conform to the following table:

DATA	POSITION	POSITION	POSITION	POSITION
	•	_		
0	300	344	324	314
1	301	345	325	315
2	302	346	326	316
3	303	347	327	317

If any of the above results were incorrect, study the data pattern for all tests and check the associated bits on the controller board.

Now we will set and check out the VCO basic free running frequency.

- (2). The VCO free running frequency is set as follows:
 - (a). Place a diode in the Single/Double density position for device 0.
 - (b). Select this device by executing a OUT-54,0 (cr) instruction.
 - (c). Observe the clock period at IC29 Pin 26 with an oscilloscope.
 - (d). Adjust Pot R35 for a square wave with a period of 2 usec high and 2 usec low. Tolerance is: +5% -0%.
 - (e). With a voltmeter, measure the DC voltage at Pin 3 of

IC8. Make a note of this voltage on the schematic for later reference. 3,595 V IC8 PIN 3

- (3). Now we will check the operation of the loop.
 - (a). Remove the diode installed in the Single/Double density position for device 0. Observe that the clock period at IC29 Pin 26 just halved. (1 usec high and 1 usec low)
 - (b). Now install the diode in the Mini/Standard position for device 0. Observe that the period doubled to 2 usec high and 2 usec low.
 - (c). Install the second diode in the Single/Double density position for device 0. Observe that the clock period doubled again to 4 usec high and 4 usec low.

If any of the above observations didn't occur, back track from IC29 Pin 26 to where the problem exists.

- (3). We will now test the fixed clock frequency for the 1791 IC. This is either a 1 Mhz or 2Mhz clock applied to Pin 24 of IC29.
 - (a). With the 2 diodes still installed from the above test, observe that the period of the clock on IC29 Pin 24 is 500 nsec high and 500 nsec low.
 - (b). Now remove the 2 diodes and observe that the period of the clock on Pin 24 of IC29 just halved to 250 nsec high and 250 nsec low.

If you didn't observe the 2 different periods as above, check IC's 19, 20 and 49.

3.7 TIMING ELEMENT AND DISC I/O BUFFER CIRCUITS

In the following section we will check to see that all the timing elements are operating properly. For example, if the drive change one-shot fails to function, all disc copying may fail due to improper settle time. Other timing element failures could cause: loss of input data, improper write timing, no motor startup delay or excessive wait states. We will use the strobe feature mentioned above to "fire" the timing elements and also to see if a clear path exists for other Disc I/O Buffers.

(1). For all the tests we will use the input strobe of IC29 Pin 4. Use the hookup wire supplied to form jumpers for these

tests. If any of these tests fail, trace through the logic from IC29 Pin 4 to the source of the problem. Now let's generate the repeatable strobe by executing the following:

OUT-54,0 (cr)
INP-50:CON (cr)

- (2). First let's test the lines to the disc:
 - (a). Jumper IC29 Pins 4 and 15.
 - (b). Observe that the signal at IC40 Pin 5 Is the same as IC29 Pin 15.
 - (c). Now jumper IC29 Pins 4 and 16.
 - (d). Observe that the signal at IC40 Pin 2 is the same as IC29 Pin 16.
 - (e). Jumper IC29 Pins 4 and 28.
 - (f). Observe that the signal at IC39 Pin 5 is the same as the signal on IC29 Pin 28.
 - (g). Observe that the signal at IC38 Pin 13 is the same as the signal on IC29 Pin 28.
 - (h). Jumper IC29 Pins 4 and 30.
 - (i). Observe that the signal at IC38 Pin 2 is the same as The signal on IC29 Pin 30.
- (3). Next we will test the head load delay timer. There are two ways this timer may be fired, we will test both.
 - (a). Reinstall the jumper from IC29 Pins 4 and 28.
 - (b). Stop the program presently running and type the following:

INP-50:DEL-.100:CON (cr)

- (c). Observe that the negative going pulse at IC4 Pin 4 is between 35 and 45 milliseconds.
- (d). Now Stop the program that is executing and type the following:

OUT-54,20:DEL-.100:CON (cr)

(e). Jumper IC29 Pins 28 and 39.

- (f). Observe that the pulse on IC4 Pin 4 is the same as in (c).
- (4). We will now check the wait timeout timer. This may be done without the use of jumpers.
 - (a). Stop the program that is presently running and type the following:

INP-57:CON (cr)

- (b). Observe that there is a positive going 160 to 170 micro second pulse on IC37 PIN 13.
- (5). The next timer to check out is the mini motor startup timer.
 - (a). Install a diode in the Mini/Standard position for device 0.
 - (b). Temporarily remove IC3 and jumper IC3 Pins 2 and 3.
 - (c). Stop the program that is presently running and type the following:

OUT-50,0:DEL-.1500:CON (cr)

- (d). Observe that the negative going pulse at IC4 Pin 12 is low for about .8 to 1.1 seconds. (Sweep: .2sec/cm, Trigger: negative DC, normal trigger, not auto.)
- (e). Remove the jumper on IC3 and reinstall IC3.
- (6). The mini motor timeout timer is easy to test. Try the following:
 - (a). Place a scope probe on IC38 Pin 10.
 - (b). Stop the present program.
 - (c). Type in the following:

OUT-50

- (d). Use a stopwatch or sweep hand on your non-digital watch and:
- (e). Wait for a convenient time then depress (cr).
- (f). The signal on IC38 Pin 2 should go high. Measure the time it takes for the signal to return low. This time

should be in the range of 10 seconds.

- (g). Retime this signal a few times to be sure it is consistant. If the time varies by more that 20%, check to see if capacitor C72 is installed correctly.
- (7). The last timer test is to see if the write precompensation circuit functions properly. There are 3 timers associated with this circuit that generate the compensation and one that generates the actual write data pulse. If your oscilloscope does not have the 15Mhz bandwidth to measure the following pulses accurately, just observe their presence for now.
 - (a). Jumper the following on IC29:
 - (1). Pin 4 to Pin 31.
 - (2). Pin 18 to 20.
 - (3). Pin 17 to 3.
 - (b). Type in the following:

INP-50:CON (cr)

- (c). Observe the following:
 - (1). IC13 Pin 4 has 300 nanosecond negative pulse.
 - (2). IC13 Pin 12 is always high.
 - (3). IC12 Pin 4 is always high.
 - (4). IC12 Pin 5 has 250 nanosecond positive pulse.
- (d). Jumper IC29 Pins 17 and 39 then observe the following:
 - (1). IC 13 Pin 4 is always high
 - (2). IC13 Pin 12 has 150 nanosecond negative pulse.
 - (3). IC12 Pin 4 is always high.
 - (4). IC12 Pin 5 has 250 nanosecond positive pulse.
- (e). Jumper IC29 Pins 17 to 3 and 18 to 38. Then observe the following:
 - (1). IC13 Pin 4 is always high.
 - (2). IC13 Pin 12 is always high.

- (3). IC12 Pin 4 has 450 nanosecond negative pulse.
- (4). IC12 Pin 5 has 250 nanosecond positive pulse.
- (f). Remove all jumpers installed on socket IC29.
- (8). The last Disc I/O Buffers to be checked are the disc status lines. To do this test we will need a shorting wire. Each of the input disc signals should be shorted to ground at the 36 Pin edge cnnector while the user observes the voltage level at IC29. To enable the READY line one jumper must be used on IC29. The diode installed for the motor tests is to be removed.
 - (a). Remove the diode installed in the Mini/Standard position for device 0.
 - (b). Jumper IC29 Pins 28 and 39.
 - (c). Observe the following:
 - (1). When Pin 9 of the edge is shorted IC29 Pin 36 goes low.
 - (2). When Pin 5 of the edge is shorted IC29 Pin 35 goes low.
 - (3). When Pin 12 of the edge is shorted IC29 Pin 34 goes low.
 - (4). When Pin 8 of the edge is shorted IC29 Pin 32 goes
 - (5). When Pin 17 of the edge is shorted IC25 Pin 9 goes low.

3.8 BRINGING UP THE 1791 IC

The last item to be tested is the 1791 itself. The previous tests have given us a 99% chance that the board will now work. We have checked all the circuitry associated with the 1791 IC except the operation of the Phase locked loop and the data lines. This will be done in this last section.

If you have been loading HMON/2 with the old Disc controller board, you will now have to load it a last time using the audio cassette.

At this time the user should go to the INSTALLATION portion of the manual to connect a drive to the Controller board. Be sure that all the proper

terminators have been installed at the disc drive.

- (1). Remove the controller board from the system and check to see that Pin 1 of IC29 is NOT SHORTED to anything else.
- (2). Reinstall the controller board and check to see if:
 - (a). Pin 21 of IC29 has +5 Volts to it.
 - (b). Pin 40 of IC29 has +12 Volts to it.
 - (c). Pin 20 of IC29 is at ground potential.
- NOTE: IF THE 1791 IC IS INSTALLED UPSIDE DOWN, THE CHIP WILL BE DESTROYED. WE WILL TEST THE IC AT THE FACTORY AND NO WARRANTY REPLACEMENT WILL BE ALLOWED IF THIS HAS HAPPENED.
- (3). Install the 1791 IC WITH PIN 1 AWAY FROM THE EDGE CONNECTORS.
- Note: We will test the drive in the single density mode. If you wish, you may retest the drive in the double density mode using the procedures in this section.
- (4). Place a Diode in the following positions:
 - (a). The select position for DSO.
 - (b). The single density position for DSO.
 - (c). If you have a Mini drive Install a diode in the mini position for DSO.
- (5). Install the controller board into the computer in the slot assigned it.
- (6). Reload HMON/2.
- (7). Begin execution at Option 6.
- (8). Select device 0 by executing the following:

:0UT-54,0 (cr)

(9). Now see if the data lines are ok. Try:

:OUT-51,0:INP-51:OUT-51,377:INP-51 (cr)

The computer should respond with:

PORT 051 = 000PORT 051 = 377

If your results are not the same, you have a shorted or open data line to/from the 1791 IC.

(10). Let's try to get the head over track 0. First, manually position the drive read/write head to the center of the disc by turning the shaft at the end of the steper lead screw by hand. Do not install the media at this time. But, close the door. Now try:

:LOA-0 (cr)

the computer responds with the prompt:

Enter Macro Instruction >

Now enter:

INP-51:CON (cr)

OUT-50,013:MAC-0 (cr)

The user should hear the drive step to track 0 while the screen displays desending sequence of numbers from 377 to 000.

If you did not get these results, first be sure the device select light on the drive came on. If it did, again, manually spin the stepper motor shaft to force the head to the center of the disc. Try the test again. If the numbers do appear desending on the screen but the drive does not step, check all lines corresponding to DIR STEP TK00 DS0 and HLOAD. If the numbers are not decending on the screen, check the TK00 line first. If this line is low while the device select light is on, we still don't have good communication with the 1791 IC. Check IC29 Pin 24 for a 2Mhz signal if Standard drive or a 1Mhz signal for a Mini drive. If the clock line is ok then the problem is still in the data or port select logic. Remove the drive from the system and then remove the 1791 IC and return to the addressing section of this manual.

- (11). Assuming that all is well so far, its time to format a diskette.
 - (a). Place an "expendable" diskette in the drive and close the door.
 - (b). Carefully place a scope probe on Pin 2 of IC38. (Write Gate)

- (c). By now the drive select light should have gone out. If it hasn't, check the INDEX line for problems.
- (d). Here we GO! Type the following:

FOR-O (cr)

The head should have loaded and the drive should be stepping. If there was no responce, check the HLT logic and its associated IC's.

If the drive IS stepping, check to see that the signal on IC 38 Pin 2 Is a square wave of 166/200 ms up 166/200 ms down (std/mini). If that is so, we're probably formatting the disc. To be sure:

- (e). Wait for the format to finish and the head to unload.
- (f). Carefully place the scope probe on Pin 5 of IC38. (Write Data)
- (g). Retype the FOR-O (cr) instruction.

See that the signal on Pin 5 of IC38 is a series of 250ns pulses occuring at a 2/4us rate (std/mini). If these pulses are absent check the Write Precompensation circuit, IC's 12, 13, 14, 16 and 30.

- (12). Seems we can format. let's see if the controller can read.
 - (a). Type the following command:

RAT-3:RET (cr)

- (b). You are now back in the Suding Operating System.
- (c). Now enter HMON/2 at Option 5.
- (d). You should hear the drive restore to track 0 and see the introduction message.
- (e). Let's see if it can read. Type:

GED-0,1 (cr)

(f). The system should respond with a screen (128 bytes) full of 345's.

If the system went away, check the Interrupt lines you installed on the CPU and Motherboard plus the wait logic. If the system came back with an error (CRC RNF IDF), check the data separator in the following way:

Issue the following command:

TRK-0 (cr)

Place one scope lead on IC25 Pin 12 and the other on IC29 Pin 26. Trigger on the IC25 pin first. You should see a series of 200ns pulses on IC25 separated by 2/4us (std/mini). The other trace should be a overlapping square wave 180 Degrees out of phase with the pulses. There is a 250ns allowable "jitter" in the Square wave with respect to the pulses. Now switch triggering and see that the square wave stops overlapping and measures 2/4us up and 2/4us down (std/mini). There is an allowable error here but the timing should be within 5%. If the square wave has a severe "accordian" appearance to it the loop is not locking. Remove the diskette and readjust the VCO Free Running Frequency, (as done before in Sec 1.7-(2)), if incorrect. Tolerance is +5% and -0%. Reinstall the diskette and see if the problem clears itself. If not, there is a problem in some part of the loop. Go read the theory of operation of the VCO Phase locked loop and check IC's 6, 7, 8, 9, 10, 11, 15, 17 21, 24, 35 and 25.

(13). If you received a screen full of 345's, it looks as if the controller reads. But, let's be sure. Type:

RES: VER (cr)

Allow the drive to step through all tracks and return with:

DONE

Now type:

DEC: ERA: STA (cr)

The screen should erase and the Disc Status Table should be displayed. There should be 01001/00720 (std/mini) reads with no errors logged.

(14). The last test will be to see if the controller can read and write successfully. Type the following:

RES: ERA: RND (cr)

HMON/2 will now do 100 random read/writes. Wait for:

DONE

Now let's look at the Disc Log Table again by typing:

ERA:STA (cr)

The table should now show 100 reads and 100 writes with no errors.

If the above tests were successfull, The Board is in operating condition and you should read the Theory of Operation and the rest of the documentation. You might want to test the board further at this time. Read the tests available in the HMON/2 Manual and try some of them. The Disc Log Table

t,

POWER-ON RESET AND LOW VOLTAGE CIRCUIT

FIGURE 2

-27A-

4.3 POWER-ON RESET AND LOW VOLTAGE CIRCUIT

The Power-On Reset and Low Voltage Circuit monitors the computer's +5 Volt line. It forces the 1791 into Master Reset on powerup and during any other time that the +5 Volt line decays below +4.3 Volts.

This circuitry also inhibits Write Gate during these occasions. This prevents the controller from accidentally writing over portions of the diskette.

This circuit consists of IC34, a Quad Comparator (2 used), and its associated resistors, capacitors and diodes.

During powerup the output IC34-2 has control of the circuit. The sequence of events are as follows: D5 has allowed C62 to discharge rapidly, insuring that on the initial (or subsequent) powerup, C62 will be discharged. When power is applied, C62 begins to charge through R37. At this time IC34-5 (the positive input) tracks the capacitor. R28 and R29 form a voltage divider that sets the negative compare voltage at approximately 4.0 Volts. Until this voltage is exceeded on the positive input IC34-5, the output IC34-2 remains low. The Capacitor, C62 takes approximately 50 milliseconds to charge to a voltage above 4.0 Volts. This keeps the output IC34-2 low for this time which forces a Master Reset into the 1791 IC. It also keeps the Write gate IC38-3 inactive.

During a voltage fluctuation on the +5 Volt supply that falls below +4.3 Volts, comparator output IC34-1 becomes active. The sequence of events is as follows: The positive input of the comparator IC34-7 tracks the +5 volt supply through R38. The negative comparator input, IC34-6, Has a fixed reference voltage of +4.3 Volts set by the Zener diode D3. R37 provides constant current through the Zener. When +12 Volts is lost, blocking diode D2, along with capacitor C73, temporarily provide the current for the reference Zener, D3. When the +5 Volt supply drops below the reference voltage on IC34-6, the comparator output IC34-1 goes low, again forcing the 1791 IC into Master Reset and inhibiting the Write Gate.

To insure that the outputs of the comparators remain active during a normal system power down, capacitor C61, along with blocking diode, D4, combine to supply the voltage and current for IC34. Resistor R42 insures a constant charging rate for C61.

4.4 ADDRESS DECODE AND CPU I/O BUFFERS

The Address Decode and I/O Buffer circuit enables the computer to pass information to and from the Double Density Disc Controller board.

In order for the board to be accessed, the following conditions must be met:

- 1. The upper five address lines must match the selected base address.
- 2. The three lower address lines must be in the range of 0 through 4 or
- 3. Either I/O READ or I/O WRITE must be active low.

When these conditions are met the board can be accessed for read or write.

ADDRESS GATING

The addressing operation happens as follows: The upper five address lines are presented to IC46 where the user selects which section in the I/O address space he wishes the board to occupy. This is done by selectively inverting the proper lines in IC46. Once this has been done, when the computer sends this address to the board, IC48-8 will go low. This line is the Conditional Board Select (CBS) signal and is gated to the following: 1. To the I/O Buffer Control Gate IC16-12. 2. To the enable input of IC33, the Port Select Decoder. The lower three addresses are presented to the port decoder through Latch IC45. Also the lower two address lines are buffered in IC18c,d and presented to the Controller IC29. IC33 generates all the conditional port select gating. If the lower three address lines are between 0 and 3, IC33 gates on IC32-8 which in turn is inverted in IC17. This inverted Controller Select(CS) signal partially enables IC's 18a and 18b. If the lower three address lines were decoded in IC33 to be equal to 4, The RW4 signal is generated which partially enables IC's 31a and 31b. If the lower three address lines were decoded to be 7, The SEVEN signal is generated. This SEVEN signal is passed to the Wait logic.

We have at the present selected one of three things. We have generated the CS signal or the RW4 signal or the SEVEN signal. We have also partially enabled the I/O buffer control gate.

I/O READ

Now, if this is a I/O READ operation, the computer will lower the I/O READ line. This line is presented to four gates. First it will fully enable the I/O buffer control gate IC16-13 which will cause the input buffer IC43 to turn off and then the output buffer IC44 to turn on. Second it is combined with RW4 in IC31a. Third, it will combine with CS in IC18a.

If the RW4 signal was active, I/O READ combines with RW4 to generate the RE4 signal at the output of IC31a. This signal enables octal buffer IC42 onto the I/O bus allowing the computer to read the data in the D Latches IC41, the drive attribute bits, and the two status signals from the $\frac{1}{2}$

controller IC29.

If the CS signal was active, I/O READ combines with CS to form RE at the output of IC18a, which when generated, will gate the controller register, selected by the lower two address lines, onto the I/O data bus for the computer to read.

The I/O READ signal is also presented to IC19a, to be gated with the SEVEN signal, but this is in the Wait logic and will be discussed later.

I/O WRITE

Now, if this is an I/O WRITE operation, the computer will lower the I/O WRITE line. This line is presented to three gates. First, it is combined with RW4 in IC31b. Second, it is combined with CS in IC18b.

If the RW4 signal was active, I/O WRITE combines to form WE4 at the output of IC31b. This signal provides the strobe pulse to the Device Select, Side Select, and Interrupt Enable D type Latch IC41. It also conditionally enables the Drive Change signal(DR CHG) at IC16c. If Data bit 4 is low true at the time, the DR CHG signal is generated at the output of IC16c.

If the CS line was active, I/O Write combines to form WE at the output of IC18b. This signal enables the Controller register, selected by the lower two address lines, to be written into by the computer.

The I/O WRITE signal is also presented to IC19a, to be gated with the SEVEN signal. This is in the Wait circuit and will be discussed later.

I/O BUFFERS

The computer data interface to the controller is through three Octal buffer IC's 42, 43, 44. The controller's internal data bus is a low true bidirectional bus. When the board is not being accessed, the normal state of the internal bus is recieve. This normal state only changes to transmit when the computer has presented the proper port address and the I/O READ signal is active low. Since the computer I/O input bus is inverted, the Octal buffer IC44 is noninverting so that the controllers internal low true bus is gated to the computers low true I/O input bus. Octal buffer IC42 converts the high true data on its inputs to low true data for the controllers low true data bus.

4.5 WAIT LOGIC

The Wait logic enables the computer to wait for the data coming from the disc without the fear of waiting "forever". This is accomplished by the wait timeout timer.

If data is already present when the computer enters wait, a maximum of two extra wait states is added to the I/O cycle.

The Wait logic is conditioned by three signals. These are, I/O READ, I/O WRITE and SEVEN. When the computer executes an I/O instruction, either I/O READ or I/O WRITE will become active low. This Combination is NANDed in IC19a and then filtered by the RC network of R25 and C32. This cleaned up signal is used to latch the Conditional Board Select signal(CBS) and the lower three address lines in Latch IC44. If the decoder IC33 detects a 7, this signal is filtered by RC network of R22 and C34. The SEVEN signal removes the CLEAR input to IC7a and allows the ANDed signals of SEVEN and RW to clock IC7-11 through IC15-8. The SEVEN signal also triggers (or retriggers) the wait timeout timer, IC25a, at this time. Once IC7a has been clocked it should not be clocked again until the wait cycle finishes. The Q output of IC7a now goes low, enabling the Three state Gate IC37a to become active. The Q output of IC7a also removes the PRESET of IC2a,b. This allows IC2 to function. IC2-5 places a high on the input of IC37a forcing the computer into the Wait State.

To remove the wait, one of three events occur. First, the wait timeout timer can timeout. This causes a high level to be presented to IC36-13. Second, a Completion Interrupt can occur from the controller IC29. This causes a high level on IC36-1. Third and most common, a Data Request could be generated by the Controller IC29. This causes IC36-2 to go high. Any of these High levels at IC36a will cause the output IC36-12 to go low. Since we just removed the PRESET from IC2, the output of IC2-5 is high. This, along with the former high of IC36a, kept IC23-11 high. Now that IC36-12 is low, IC23-11 will go low. At the next 2Mhz clock rising edge, the Q output IC2-5 will go low. This signal now enables one input to IC32 (CYC) and causes the CS signal to be generated. This along with the lower two address lines being one, causes the fourth register in the controller to either be read or written. The signal from IC2-5 also disables the D input to itself through IC15-12. This forces the Q output IC2-5 to remain low until IC7a is CLEARed.

The controller IC29 was selected and we are still in wait. When the next 2Mhz rising edge comes along, the low at the D input IC2-12 is clocked to the Q output. This signal is gated to the CPU through IC37-13 and removes the wait request. Now we are waiting on the CPU to release from the wait state and remove either the I/O READ or I/O WRITE that started this wait state. When the computer removes this signal, Latch IC45 is opened and the next address on the address bus sets up. This in turn removes the SEVEN signal which forces IC7a into the CLEARed state. The Q outputof IC7a no

PRESETS IC2 while the Q output three states IC37a again. The wait Circuitry is now ready to start another cycle.

Note that when any one of the conditions to remove us from wait occurs, we must wait for the 2Mhz clock to occur. Then we must wait for the computer to acknowledge our request for wait state exit. If these first two events occur at their worst case times, (fastest) we could cycle so fast that we don't meet the access time of the controller IC29. There is a jumper removing the second period of wait if the CPU is running at 2.5Mhz. If the system were to be run at 4Mhz without the trace broken and the jumper installed to add this second 500ns delay (IC2-9) the access time of the controller IC29 would be exceeded. Therefore if the system is to be run at 2.5Mhz, no modifications need be done. However, if the system is to be run at 4Mhz, the user should cut the trace butween IC2-5 and IC37-14 and jumper IC2-9 to IC37-14. NOTE that The Digital Group does NOT support a 4Mhz system (4/79).

4.6 SEL PORT LOGIC

The SEL Port logic contains all drive select, side select, board interrupt enable, and drive change logic. The drive select bits are read/write. The side select bit is read/write only if that particular drive is jumpered as present. The board interrupt enable bit and the drive change bit are write only. All bits except the drive change bit are stored in D type Latch IC41.

There are three drive attribute bits associated with the SEL Port. These bits set up the drive's attributes according to the diode matrix. This matrix allows each drive to be of a different size or density or number of sides.

DRIVE SELECT CIRCUITRY

The lower two bits of the SEL port are the Drive Select bits. These bits are presented to the drive select decoder, IC28, where a Two Line to Four Line decode takes place twice. The first, in IC28a, is used to select the correct drive when the head is loaded. This decoder provides the drives with the Drive Select signal through inverter IC27 and Open Collector Driver IC39. The second set of decoding, IC28b, is active all the time and provides the diode matrix with one crosspoint per drive. These crosspoints are labeled 1 through 4 on the schematic and correspond to drives 1 through 4 that may be attached to the controller. The crosspoints provide a ground for the diodes that would be installed to select certain attributes.

SIDE SELECT CIRCUITRY

The Side Select bit is the third bit. This bit is sent to the drives through Open Collector Driver IC40d. The Side Select line, IC41-3, is logically ORed in IC31d with the "A" column of the diode matrix before being read back by the computer through Octal buffer IC42. Placing a diode in the "A" column for the selected drive causes resistor R18 to be pulled low by an output of IC28b. This low allows the output of IC31d to track the input IC31-13. If no diode was installed in the "A" column for the selected drive, resistor R18 presents a constant one to the output of IC31d regardless of the condition of the Side Select D Latch IC41.

The software selects the bottom side of a particular drive by writing a zero to the side select bit. If upon reading back this bit, the software finds that it has changed to a one, it can be assumed that no drive is present for this particular drive number.

DRIVE CHANGE CIRCUITRY

The Drive Change signal is generated by the combination of WE4 and the fifth bit of the SEL Port in IC16-10. This signal is a one microsecond positive strobe and is Write only. The drive change strobe triggers the

head load delay one shot IC4-4 if the head was already loaded. (See Figure 2.)

BOARD INTERRUPT CIRCUITRY

The top output bit is the Board Interrupt Enable bit. This bit is write only. When set to a one, this signal allows the interrupt generated by INTRQ or DRQ in IC36b,c to be gated through Open Collector driver IC40c. Specific causes for interrupts are discussed in the 1791 section.

ATTRIBUTE SELECT LOGIC

The Drive Attribute Logic performs all logic switching to convert the controller board from different densities and different size diskettes. There are four attributes that are selected by the diode matrix for each drive. These are:

- A. Drive Present (explained in Side Circuitry).
- B. Single or Double Density.
- C. Mini or Standard Drive.
- D. One or Two Sided.

Three of these attributes are presented to the computer on bits three through five of the SEL Port through IC42.

The first of these attributes is the Single/Double Density attribute. To generate the Double attribute, no diode is placed in the "B" column for the selected drive. This causes resistor R19 to pull up the "B" crosspoint for the selected drive. In turn, IC30b inverts this high to generate a low S/D signal. The S/D signal is gated with other portions of the circuit to select Double density. This signal is also presented to Octal buffer IC42. If a diode is installed in the "B" column in the matrix for the selected drive, the line from IC28b pulls down resistor R19, which is then inverted through IC30b to produce a high S/D signal. This high S/D signal is then gated to other portions of the circuit to select Single Density.

The second of these attributes is the Mini/Standard attribute. To generate the Standard attribute, no diode is placed in the "C" column for the selected drive. This causes resistor R20 to pull up the "C" crosspoint for the selected drive. This in turn generates a high STD signal attached to R20. IC30a invert this high level to generate a low MIN signal. Both of these signals are gated with other portions of the circuit to select a Standard drive. The output of IC30a is presented to Octal buffer IC42. If a diode is installed in the "C" column in the matrix for the selected drive, the line from IC28b pulls down resistor R20, which generates a low STD signal. This low is inverted in IC30a to generate the high MIN signal. Both these signals are gated to other portions of the circuit to select a Mini drive.

The third attribute is the Side attribute. To select a single sided

drive, no diode is installed in the "D" column for the selected drive. This causes resistor R21 to pull up the input of inverter IC30e. The low output of IC30e is passed to Octal buffer IC42 to be read by the computer as single sided. If a diode was placed in the "D" column of the selected drive, the output of IC28b will pull down resistor R21. This low is inverted by IC30e and passed to Octal buffer IC42 to be read by the computer as double sided.

OTHER SEL PORT SIGNALS

Two other read only signals are accessable by reading the SEL port. These are status outputs of the controller IC29. The INTRQ output IC29-39 is passed to the top bit of Octal buffer IC42 while the DRQ output IC29-38 is presented to the sixth bit of Octal buffer IC42. These two signals will be explained in the 1791 section.

4.7 WRITE PRECOMPENSATION CIRCUIT

The Write Precompensation Circuit generates the proper amount of compensation to the Write Data pulse for reliable Double Density operation. This is done by selecting one out of the three one-shots to be fired for the correct length of time. The original Write Data pulse is delayed a fixed amount of time for Nominal Data timing. For an Early Write data pulse, the original Write Data pulse is generated 150 nanoseconds earlier than a Nominal Data pulse. For a Late Write data pulse, the original Write Data pulse is delayed 150 nanoseconds after the Nominal Data pulse.

Three signals from the controller IC29 are required to operate the Write Precompensation Circuit. These are Early, Late and Write Data. The Early Late signals are valid prior to the leading edge of each Write Data The Early signal IC29-17 is passed directly to the negative edge enable input of the Early one shot IC13b. The Late signal IC29-18 is passed directly to the negative edge enable input of the Late one shot IC12a. Both the Early and Late signals are NORed in IC16b to produce the negative edge enable signal for the Nominal one shot IC13a. Note that under normal operating conditions, the combination of Early and Late being high at the same time is not possible. The Write Data pulses are inverted by IC30c to produce a negative pulse. This negative pulse is presented to the negative edge trigger input of Early, Nominal and Late one shots IC13b, IC13a, and IC12a. Whichever oneshot has its negative edge enable input high will fire at this time. This pulse in NANDed in IC14 to trigger the Write Data one shot IC12b on the falling edge. This one shot produces a positive going 250 nanosecond Write Data pulse that is presented to the drives through Open Collector Inverting Driver IC38b.

WRITE PRECOMPENSATION CIRCUIT
FIGURE 6

4.8 DELAY AND READY LOGIC

The delay logic performs three delay functions. The READY logic is also included in this section.

MINI MOTOR DELAY TIMER

The first delay is the motor timeout timer for Mini drives. This timer IC3 acts as a retriggerable one shot. The timer is enabled by the MIN signal on Pin 4. The timer is triggered by one of the four port enable strobes RE, WE, RE4, WE4 through IC14. Once triggered, capacitor C9 charges through resistor R3. When further accesses are made to the board, IC14 pulses high. These high pulses are used to partially discharge capacitor C9 through two Open collector Inverters IC21c,d. This discharge pulse is one micro second in duration and many of these pulses are required to maintain a low voltage on capacitor C9. It should be noted then, that the motor on timer requires HEAVY board usage to maintain the mini motors in the on state.

MINI MOTOR STARTUP DELAY TIMER

The second timer is the mini motor startup timer IC4b. This timer inhibits the controller IC29 from reading or writing until the mini motors are up to speed. The only time this timer fires is when a rising edge is generated by the mini motor timer starting. If the selected drive is a Mini drive, the STD signal is low. This signal is presented to the positive edge trigger enable input IC4-9. The rising edge of IC3-3 generates a negative going pulse out of IC4-12. This negative going pulse is ANDed with the Head load delay timer in IC15a to produce a low on IC29-23 whenever a delay in reading or writing to the disc is required.

HEAD LOAD DELAY TIMER

The third timer is the head load delay timer. This timer inhibits reading or writing to the disc whenever the head has been loaded and the head settling time has not expired. The head load delay timer can be triggered in one of two ways. The first way is when the controller IC29-28 (NLD) goes high signifing that the head is to be loaded. On this occasion, IC4-1 is low. The rising edge HLD into IC4-2 causes the one shot to trigger. This generates a low output pulse on IC4-4 which is ANDed with the mini motor startup timer in IC15a. The output of IC15a generates a low on IC29-23 causing reading or writing to the disc to be inhibited.

The second way the head load timer may be triggered is when the head is loaded and a drive change pulse is issued. When the head is loaded, HLD presents a high to IC4-2. This high level is also equivalent to the negative edge enable required by the negative edge trigger input to trigger. When a drive change pulse is generated in IC16c (DR CHG), the negative edge of this pulse triggers the Head load timer. The drive change pulse only will trigger the head load timer when the HLD signal is active high.

READY LOGIC

The Ready logic performs three tasks. It allows the Ready line from a Standard drive to be inverted and gated to the controller IC29-32 whenever the head is loaded. It prevents the Ready line to the controller IC29-32 from going Not Ready whenever the head is not loaded. It also presents a constant Ready to the controller whenever the controller is using Mini drives.

IC5 performs all the Ready logic functions. IC5a,b,d combine to form an AND OR circuit. One input to the AND OR is through IC5c. The two inputs to IC5c are the high true head load (HLD) signal and the low true Drive Ready signal from 36 Pin edge connector Pin 8. Resistor R17 terminates the Drive Ready signal. The only time a Not Ready signal is Presented to the IC5-4 input to the AND OR circuit is when the drive is Not Ready (IC5-9 high) and the HLD signal to IC5-10 is high. This causes the output of the AND OR gate to go low if IC5-5 was high. In order for IC5-5 to be high, IC5d must have a low on its input, which is the MIN signal. This case would be true if the STD signal has high (selecting Standard drives). If the MIN signal was high, its inversion through IC5d disables the Standard drive ready line and produces a constant high on the output of the AND OR gate by placing a low on IC5-2.

4.9 CONTROLLER CLOCK CIRCUIT

The controller clock circuit generates and switches the system clock between the two frequencies required for Mini and Standard drives. The clock frequency for Standard drives is 2 Mhz and the the clock frequency for Mini drives is 1 Mhz.

A 4 Mhz clock signal is generated by the TTL oscillator IC49. D type Flip Flop IC20a divides this 4Mhz clock by 2 before it is presented to D Flip Flop IC20b where it is divided by 2 again. The Q output of IC20a is presented to IC19b which is acting as a two to one line decoder. The Q output of IC20a is presented to IC19d. The 2 Mhz clock is passed to the controller IC29-24 through IC19b,c when the STD signal is high. The 1 Mhz clock is passed through IC19d,c when the MIN signal is high.

The 2 Mhz signal from IC20a is also presented to the Wait logic for the clocking of IC2.

4.10 VCO PHASE LOCKED LOOP

The VCO Phase Locked Loop is comprised of six sections. These are:

- 1. Phase Comparator
- 2. Loop Filter (switchable)
- 3. Amplifier
- 4. Low Pass Filter
- 5. Voltage Controlled Oscillator
- 6. Divider Chain

PHASE COMPARATOR

The Phase Comparator determines the phase error of the input frequency (Data) against the present VCO frequency and generates a difference voltage used to change the frequency of the VCO towards the incoming Read Data frequency.

Read Data from the disc is buffered by IC37d. The Read Data line is terminated by resistor R15. The buffered Read Data is presented to IC25b where the input pulse is shortened to 200 nanoseconds. The Q output of IC25b is sent to the controller IC29-27 as the RD pulses. The Q output of IC25b is presented to the clock input of IC35b. IC35b, a D type Flip Flop performs a divide by two on the data. This converts the input data from a pulse to either a rising edge or a falling edge. This divided by two data is presented to D type Flip Flop IC35a. Here the Data is clocked with the 2X VCO frequency. A phase comparison is made between the 2X VCO and the input data in IC6b. This comparison is inverted in IC17e and then reinverted in IC21f to produce the Pump Up signal. The Pump Up signal is also ANDed with the 1X VCO signal in IC15d and then presented to the D input Of D type Flip Flop IC24b. This Flip Flop is clocked by the 2X VCO signal. The Q output of IC24b is inverted in IC21e to produce the Pump Down signal.

LOOP FILTER

The Loop Filter generates the lock, range and steady state Phase error constants of the system. It has two extra capacitors that are switched into operation to change the characteristics of the loop for different data rates.

The Pump Up and Pump Down signals are combined at the junction of resistors R40, R32, and R33. The steady state bias point of this junction is 2.5 Volts. The Pump Up and Pump Down signals vary this voltage in proportion to the frequency difference between the incoming data pulses and the 1% VCO frequency. Loop filtering is done in resistor R33 and Capacitors C48, C49 and C50. In Double Density Standard mode, both C48 and C50 are gated off by the two lows presented to the inputs of IC's 15b and 6c. The two lows are the MIN and S/D signals produced in the diode matrix. In the Single Density Standard and Double Density Mini mode, only capacitor C48 is In this case, one of the two signals MIN or S/D is low. One of gated off. these lows inhibits one input of AND gate IC15b. Capacitor C50 is gated on by one of these signals also through IC6c. The last case is the Single Density Mini. Here, capacitor C48 is gated on and capacitor C48 is gated off. In Single Density Mini, both MIN and S/D are active high. This enables AND gate IC15b and disables XOR gate IC6c. These capacitors modify the natural frequency of the loop to accomodate the different data rates of the above types of drives.

LOOP AMPLIFIER

The Amplifier is used to adjust overall loop gain. This Amplifier must have a high slew rate.

The Loop Amplifier is a noninverting high slew rate Operational Amplifier with a gain of +2.1. The input resistance is the parallel combination of R41 and R47. The feedback resistor is R46. The negative input is biased at 2.5 Volts to adjust for the steady state input bias from the Loop Filter This steady state bias is passed to the next stage.

LOW PASS FILTER

The Low pass filter is used to remove high frequencies introduced by the digital phase comparitor. It is also used to reduce the response of the loop to instantanious variations in the input data stream.

The Low Pass Filter is a 2 Pole Butterworth Active filter. The cutoff frequency of this filter is approximately 150 Khz. The Low Pass Filter consists of IC9 a LM741, capacitors C65 and C66, plus resistors R44 and R45. It is a noninverting type filter.

VCO

The VCO is the basic clock for the loop. It has a Range input to set the Mhz/Volt constant and a Frequency input to vary the output frequency to achieve lock.

The VCO is a Texas Instruments 74S124 Dual VCO IC. Its free running frequency is set by the Range input and capacitor C53. The output frequency is 8Mhz. Capacitor C54 filters the Frequency control input to remove any high frequency noise generated by the TTL circuits nearby. The 8Mhz output

on IC8-7 is sent to the Divider Chain to provide the 1% and 2% VCO signals required for the Phase Comparitor. The second VCO section of IC8 is disabled.

DIVIDER CHAIN

The Divider Chain provides different divide rates for the different data rates used in the controller. It also provides the controller IC29 with the 180 degree out of phase bit rate clock required for data separation.

The Divider Chain receives its input from IC8-7 the VCO. This 8Mhz signal is first divided by two in D type Flip Flop IC7b. The output of IC7b is a 4 Mhz signal presented to the Binary divider IC10. IC10 divides this 4 Mhz signal into the different 1% and 2% VCO signals required. IC11 is a Dual four line to one line multiplexer. The output of IC11b is the 1% VCO signal. The output of IC11b is the 2% VCO signal. The multiplexer is switched by the S/D and MIN diode matrix signals. The output periods of IC11 for different S/D and MIN signals are tabulated below.

S/D	MIN	DRIVE TYPE	IC11a	IC11b
0	0	D.D. STD	1 us 2 us	.5 us 1 us
1	0 1	S.D. STD S.D. MIN	2 us 4 us	1 us 2 us

The output of IC11b is first limited to a period of 800 ns low and 800 ns high by IC1. This prevents exceeding the limits imposed by the controller IC29 on its RCLK input IC29-26 (see 1791 operating specs). This signal is then divided by two to generate the 180 degree out of phase RCLK signal in IC24a. The RCLK signal is presented to the controller IC29-26.

4.11 DISC I/O BUFFERING

The Disc I/O signals and the IRQ signal buffering will be discussed here.

There are three Status signals from the drive that are buffered by parts of IC37. These are:

The Write Protect Signal enters the controller board on 36 Pin edge connector Pin 9. This line is terminated by resistor R12. The Write Protect signal is buffered in IC37a and is presented to the WP controller input IC29-36.

The Index signal enters the controller board on 36 Pin edge conector Pin 5. This line is terminated by resistor R13. The Index signal is buffered in IC37b and then presented to the IP controller input IC29-33.

The Track O signal enters the controller board on 36 Pin edge connector Pin 12. This line is terminated by resistor R14. The Track O signal is buffered in IC37c and then presented to the TR00 controller input IC29-34.

There are four controller outputs that are inverted and buffered by Open Collector IC38. These are:

The Write Gate signal is conditioned by the Master Reset signal in IC38: before being sent to the drives on 36 Pin edge connector Pin 7.

The Write Data signal is sent to the drives through IC38b. This signal leaves the board on 36 Pin edge connector Pin 10.

The Motor On signal from IC3-3 is conditioned by the MIN signal in IC38c before being sent to the drives on 36 Pin edge connector Pin 19.

The Head Load signal is conditioned by the STD signal in IC38d before being sent to the drives on 36 Pin edge connector Pin 18.

The Drive Select signals DS1, DS2, DS3, and DS4 are inverted and buffered by IC39b,c,d,a before being sent to the drives in 36 Pin edge connector Pins 13, 23, 24, and 25 respectivly.

There are three drive lines and one CPU line buffered in IC40. These are:

The Direction line is buffered in IC40a before being sent to the drives on 36 Pin edge connector Pin 15.

The Step signal is buffered in IC40b before being sent to the drives on 36 Pin edge connector Pin 6.

Ü

DOUBLE DENSITY SYSTEM MANUAL

CHAPTER 4: THEORY OF OPERATION

The Side signal is buffered in IC40d before being sent to the drives on 36 Pin edge connector Pin 21.

The IRQ signal is buffered in IC40c before being sent to the CPU Interrupt Socket Pin 8 through 36 Pin edge connector Pin 34.

4.12 POWER SUPPLIES

The +12 Volt supply for the board enters on 22 Pin edge connector Pin 22. It provides +12 Volts to the controller IC29, The Amplifier IC22, the Low Pass Filter IC9 and to the Comparator IC34. It is filtered by capacitors C38, C59, C63, C68 and C69.

The -5 Volt supply for the board enters on 22 Pin edge connector Pin B. It provides -5 Volts to the Amplifier IC22 and the Low Pass Filter IC9. It is filtered by capacitors C41, C42, C60 and C64.

The +5 Volt supply for the board enters on 22 Pin edge connector Pins 1 and A. This supply provides all +5 Volts to the TTL integrated circuits and to the pullup resistors. The +5 Volt supply is also filtered by inductor L1 and then provides the +5b Voltage for the VCO section. The +5 volts is filtered by numerous tantalum and disc ceramic capacitors.

4.13 INTERRUPTS

The Digital Group Double Density Controller board uses a scheme of Interrupts that you probably have never seen before. This type of interrupt uses Interrupt Mode Zero (8080) to jam an instruction into the Z80. This instruction is a LD A,A. This instruction is jammed onto the bus through the CPU Vector Interrupt Socket Pin 8 (bit 7). When CPU Interrupts are enabled, pulling down one of the Vector lines causes an Interrupt to occur. When the Z80 acknowledges the interrupt, a Vector of 177Q or 7FH is jammed onto the bus. In Interrupt Mode Zero, this Vector is taken as an instruction and is executed by the CPU as if this instruction was fetched from memory. After execution, the program counter is incremented as in any instruction, and normal processing continues.

In the Digital Group Double Density Controller Software for reading or writing a sector, this interrupt scheme is used. When the controller board needs to read or write a sector:

- 1. Controller Board interrupts are enabled.
- 2. Read or Write command is issued.
- 3. CPU Mode Zero Interrupts are enabled.
- 4. Halt instruction executed. (Refresh working)
- 5. Controller Board issues an Interrupt.
- 6. The LD A, A instruction executed instead of Halt.
- 7. Read or Write data is done using Wait logic.
- 8. Controller Board interrupts disabled.
- 9. Software returns to calling program.

CHAPTER 5

1791 PRODUCT SPECIFICATION

5.1 INTRODUCTION TO WD1791 PRODUCT SPECIFICATION

We should review some of the curcuitry of the controller board before reading the 1791 Product Specification.

The 1791 IC is equivalent in architecture to many of the microprocessors in use today. It has a fixed instruction set and executes instructions as they are given to it. These instructions take longer to execute than a normal microprocessor instruction, but these instructions are more powerfull than most microprocessor instructions. When an Instruction is given, the 1791 resets the INTRQ flag (if set) and then sets its busy flag. Upon completion of the instruction, the 1791 resets its busy flag and then sets the INTRQ flag. This latter flag is available for testing as the top bit in the SEL Port. It is STRONGLY recommended that the software test the INTRQ bit while waiting for instruction completion.

Each instruction has a field in that instruction that performs specific functions. These are :

- 1. Load the head at the start of the operation.
- 2. Verify for the correct track when done.
- 3. Update the internal track register when done.
- 4. Step at a specific rate.
- 5. Read or Write multiple sectors.
- 6. Write with Deleted or Regular Address Mark.
- 7. 15 millisecond delay or not.

With the hardware configuration of the Digital Group Double Density Controller Board one of these optional bits is NO LONGER OPTIONAL. The Head load bit in all Step, Seek and Restore Instructions MUST be SET. One of the conditions for drive select in the hardware is that the head must be loaded.

Also some of the bits have to be used correctly. Here is a summary of these bits and how they should be used.

The Verify bit should be used at the users option. It verifys the position of the head after a Seek, Step or Restore by reading the first ID field it encounters on the Track. UNDER NO CIRCUMSTANCES should the user

have the verify bit ON during a DISK FORMAT operation. It should also be noted here that on a Seek, Step or Restore Instruction that had the Verify bit RESET, no step settle time is added to the Instruction. That is, the user must now wait the drive manufacturers specified Step Settle Time BEFORE issuing a Read Sector or Write Sector Instruction.

The Update bit is used to increment/decrement the Track register in the 1791. Presently no software provided by the Digital Group uses this bit. All Stepping operations are done with the Seek Instruction and this Instruction automatically updates the Track Register.

The Step Rate bits are used to set the step rate to one of four available rates. These bits should be set closest (equal or above) to the drive manufacturers specified step rates.

The Read or Write Multiple Sector bit allows the user to read or write entire tracks of data to/from memory with only one Instruction. This bit is not presently used in any of the Digital Group software. It is recommended that the user NOT try this option until he has MASTERED the theory behind the Interrupt/Halt data transfer scheme used in the software.

The Write with Deleted Data Mark bit should always be set to zero. This bit is fine for IBM but it serves no usefull purpose as far as we are concerned.

Another bit that should always be set to zero is the 15 millisecond delay bit. This bit is left over from the 1771 IC and since then the Read and Write Sector flowcharts have changed. If this bit is set, only one sector per revolution can be read if you are reading sectors sequentially. (See the 1791 flowcharts for a better explanation.)

Other bits that have not been implemented in the Digital Group software are Interrupt Instruction bits O through 3. The user might find a use for these bits after he becomes familiar with the system. We recommend that the Interrupt Instruction be executed with all these bits off.

A brief explanation of the 1791 internal registers is also in order.

The first register is the Command/Status Register. This is the register that all Instructions are written to and all Status is read from. Reading this register resets the INTRQ bit in the SEL Port. Since this bit is used to generate CPU Interrupts it is recommended that all software read the status register after command completion to clear the INTRQ bit whether or not the status is needed.

The second register is the Current Track Register. This register should only be written to when changing drives. It can be read at any time to see what Track the head is presently under.

The third register is the Requested Sector Register. This register should be loaded with the desired Sector prior to the issuance of a Read or Write Sector Instruction.

The fourth register is the Data Register. This register is used to hold the requested Track during a Seek Instruction. It could also be used for read or write data bytes during Read or Write Sector Instructions. The way the hardware of the Digital Group Double Density Controller is setup, this data transfer operation will be done through the Wait Port which is actually this register but with wait states added.

Keep this information in mind when you read the 1791 Product Specification Section.

CHAPTER 6

SAMPLE DRIVER PROGRAM

6.1 INTRODUCTION

The Digital Group Double Density Disc Controller Sample Driver has three entry points used by the calling program.

The INITialization routine (INIT) fills the Drive Attribute Table and restores all drives that are present to Track O. This routine should be called upon powerup and whenever a Drive Attribute change is made.

In DISKMON V3.00, INIT is called every time the system is restarted through location 340 000.

In OASIS V5.3D, a variation of this routine reinitializes only the drive specified in a 'MOUNT' or 'ATTACH' Command.

You can assume that the INIT Routine destroys all registers.

The Read Block(s) Routine (DSKRD) reads a specified number of blocks starting at the START BLOCK into memory. On entry the registers should be:

A= UNIT NUMBER

BC = BLOCK COUNT (256 Bytes/Block)

DE= START ELOCK (0 through Maximum-1)

HL = START BUFFER ADDRESS

On a good read the registers are:

A= 0 (Zero Flag=1)

BC = UNKNOWN

DE= LAST TRACK AND SECTOR READ

HL= START BUFFER ADDRESS

On a bad read the registers are:

A= ERROR CODE (Zero Flag=0)

BC = UNKNOWN

DE= TRACK AND SECTOR OF ERROR (For errors 3-6)

HL = START BUFFER ADDRESS

The Write Block(s) routine (DSKWRT) uses the same parameters as the Read Block(s) routine EXCEPT the direction of data is reversed.

The error codes returned to the calling program are as follows:

- 1. DRIVE NUMBER TOO LARGE
- 2. DRIVE NOT PRESENT
- 3. SEEK ERROR
- 4. BAD TRACK NUMBER
- 5. READ ERROR
- 6. WRITE ERROR

The user can get more information from the controller Status port on a Read or Write Error. If a Read or Write error occurs, the user should read the controller status register if he needs more information. The typical errors read from the Status register are:

2XX = DRIVE NOT READY
004 = DATA TRANSFER ERROR
006 = DATA TRANSFER ERROR
010 = DATA CRC ERROR
020 = RECORD NOT FOUND
030 = ID FIELD CRC ERROR

Any others signify controller hardware problems and should be expressed as such.

6.2 SAMPLE DRIVER CODE

		1; 2;	Sample Driver Controller usi	for the Digital Group Double Dens ng the LD A,A Interrupt Scheme.
		3; 4;	(C) 1979 by Th	ne Digital Group
		5; 6; 7; 8;	Written by Lar Last Revision	
		9; 10; 11;	MAIN READ/WRIT	TE LOOP
		12; 13; 14;	input:	output: error output:
		15; 16; 17; 18; 19; 20;	BC= Block Cour DE= Start Bloc	er AF=0 Z=1 AF= ERR CODE Z= nt BC= Destroyed ek DE= Last Tr/Se art HL= Buffer Start
0003 0005 0006	F680 1802 F5	21; 22 DSKWRT: 23 24 25 DSKRD: 26 27 RDWRA:	PUSH AF OR 200Q JR RDWRA PUSH AF SUB A LD (RDWR), A	; Save the Unit Number; Set top bit for Write; Go around read entry Point; Save the Unit Number; get zero for read; Save the Read/Write Flag

```
; disable further interrupts
000A F3
               28
                              DΙ
000B ED46
                              IMO
                                                ; Set to 8080 type interrupt
               29
                                                ; Get the Unit Number back
000D F1
               30
                              POP AF
                                                ; Save IX in case used.
000E DDE5
                              PUSH IX
               31
                              LD IX, (UNITPTR); Get current unit pointer
0010 DD2AF301
               32
                                                ; Save Buffer address on stack
0014 E5
               33
                              PUSH HL
                                                ; Get Start Record Number to H
0015 EB
               34
                              ΕX
                                   DE.HL
                                                ; Upper half of Bolcks to D
0016 50
               35
                              LD
                                   D,B
0017 59
                                   E,C
                                                ; Lower half of blocks to E
                              LD
               36
0018 CDBA00
                                                ; Select the unit convert Tr/S
                              CALL SETUP
               37
                                                ; Nonzero is a error
001E 2028
               38
                              JR
                                   NZ.ERROR1
                                                ; get to the right track
001D CD0C01
               39 RDWRB:
                              CALL SEEK
                                                ; nonzero is error
0020 2023
               40
                              JR
                                   NZ, ERROR1
                                                ; get addr to HL blocks to (sp
0022 E3
               41
                              ΕX
                                   (SP), HL
                                                ; Save Tracke and sectors
0023 D5
               42
                              PUSH DE
                                                ; Get read/write flag
0024 3AF501
               43
                              LD
                                   A, (RDWR)
                                                  put bit 7 into carry
0027 07
               44
                              RLCA
0028 F5
                                                  save flags
               45
                              PUSH AF
                                                ; Read if no carry
0029 D46F01
               46
                              CALL NC, READS
                                                ; error exit if nonzero
                             JR
002C 2C15
               47
                                   NZ, ERROR3
                                                ; get flags back
002E F1
               48
                             POP
                                   ΑF
                                                ; it is write if carry
               49
002F DC9A01
                             CALL C.WRITES
                                                ; error exit if nonzero
                                   NZ, ERROR2
0032 2010
               50
                             JΡ
                                                ; get Track and sector back
0034 D1
               51
                             POP
                                   DE
                                                ; trade blocks in HL for mem a
0035 E3
                                    (SP), HL
               52
                             EΧ
                                                ; one less block
0036 2B
               53
                             DEC
                                   HL
                                                ; top half blocks to A
0037 7C
               54
                             LD
                                    A,H
                                                ; see if H=L=0
0038 B5
               55
                              O R
                                   L
                                               ; zero is OK no error exit
0039 280A
               56
                                    Z, ERROR1
                              JR
                                               ; get the next sector number
003B CD5A01
                57
                              CALL INCSEC
                                                ; no errors get another sector
003E 28DD
                5.8
                              JR
                                   Z.RDWRB
                                                ; get mem adr back to HL
0040 E3
               59
                              ΕX
                                    (SP),HL
                                                ; error exit with nonzero
                              JR
                                    ERROR1
0041 1802
               60
               61:
               62:
                                                : get RDWR flag off stack
0043 E1
               63 ERROR3:
                              POP
                                   HL
0044 D1
                                                ; get Track and Sector back
               64 ERROR2:
                              POP
                                   DΕ
                                                ; get back real HL
0045 E1
               65 ERROR1:
                              POP
                                   HL
                                                ; and IX
0046 DDE1
                              POP
                                   ΙX
               66
                                                ; save error code if any
0048 F5
               67
                              PUSH AF
                                                ; get unit number
0049 DB2C
               68
                              ΙN
                                    A.(SEL)
                                                ; mask off interrupt en bit
004B E66F
                69
                              AND
                                    157Q
                                                ; disable board interrupts
004D D32C
               70
                              OUT
                                    (SEL),A
                                                ; get error code back if any
               71
                              POP
                                    ΑF
004F F1
                                                ; Go back to calling routine
0050 C9
                72
                              RET
                73;
                74;
                75;
                76;
                77;
                              INITIALIZE ROUTINE
                78:
                79;
```

```
80; This routine initializes all parameters in the Disc
                81; Parameter table. It should be called upon powerup and any
                82; time the user wishes to change Drive Attributes.
                83;
                84;
                                                 ; start with drive 0
0051 0600
                85 INIT:
                              LD
                                    B,0
                                                 ; first table entry
0053 DD21DA01
               86
                                    IX,DSO
                              LD
                                                 ; save it for later also
0057 DDE5
                              PUSH IX
               87
0059 78
                                                 ; get drive number to A
               88 INITA:
                              LD
                                    A.B
005A D32C
                                                 ; select that drive
               89
                              OUT
                                    (SEL),A
005C DB2C
                                                 ; get Attributes for that driv
                90
                              ΙN
                                    A, (SEL)
                                                 ; see if Side came back zero
005E CB57
               91
                              BIT
                                    2,A
                                    (IX+5), OFFH; set no drive there to be sur
0060 DD3605FF
               92
                              LD
                                                 ; of came back one...no drive
0064 203D
               93
                              JR
                                    NZ, INITX
0066 CB6F
               94
                              BIT
                                                 ; Single Density ? One=S.D.
                                    5,A
0068 2E80
               95
                                    L,128D
                                                 ; Single Density Sector length
                              LD
                                    NZ, INITB
                                                 ; Brif Single Density
006A 2002
               96
                              JR
                                                 ; Double Density Length (256)
006C 2E00
               97
                              LD
                                    L,0
                                                 ; save sector length in table
006E DD7504
               98 INITB:
                              LD
                                    (IX+4),L
                                                 ; step rate for Standard Drive
                                    D, STDSTEP
0071 1605
               99
                              LD
                                                 ; Standard Tracks and Sectors
0073 211A4D
               100
                              LD
                                    HL.STDTRSE
                                                 ; See if Standard or Mini
0076 CB67
                101
                              BIT
                                    4 , A
                                                 ; zero is Standard Drive
0078 280B
                102
                              JΡ
                                    Z, INITC
                                                 ; step rate Mini Drive
007A 1604
                103
                              LD
                                    D, MINSTEP
                                    HL, MINI1SID; One Sided MINI Track and Sec
007C 211228
                104
                              LD
                                                 ; see if 2 sided Mini
007F CB5F
                105
                              BIT
                                    3 , A
                                                 ; Brif only 1 Sided
0081 2802
                106
                              JR
                                    Z, INITC
                                                 ; 2 sided Mini is Different
0083 2623
                107
                              LD
                                    H, MINI2SID
                                               ; Save Number of Tracks
0085 DD7401
               108 INITC:
                              LD
                                    (IX+1),H
                                                 ; Check for 2 sided again
0088 CB5F
                109
                              BIT
                                    3,A
                                                 ; 1 sided branches
                                    Z, INITD
008A 2802
                               JR
               110
                                                 ; double sectors for 2 sided
008C CB25
               111
                               SLA L
                                                 ; save maximum Sectors
008E DD7500
               112 INITD:
                                    (IX+0),L
                              I.D
                                                 ; Save copy of Attribute Bits
0091 DD7702
               113
                              LD
                                    (IX+2),A
0094 DD7203
                114
                              LD
                                    (IX+3),D
                                                 ; Save step rate
                                                 ; get Unit number back in A
0097 78
                115 INITR:
                              LD
                                    A,B
0098 F608
                                                 ; or in the drive change bit
                                    DRICHG
                116
                               OR
                                                 ; select the drive again
009A D32C
                117
                               OUT
                                    (SEL),A
                                                 ; Get this drive to Track Zero
009C CDC501
                118
                               CALL RESTORE
                                                 ; set current track to zero
                                    (IX+5),0
009F DD360500
               119
                              LD
                                                 ; the table increment
                              LD
                                    DE,6
00A3 110600
                120 INITX:
                                                 ; add in the increment
00A6 DD19
                121
                               ADD
                                    IX, DE
                                                 ; get to next drive
00A8 04
                               INC
                                    В
                122
                                                 ; got to four yet?
00A9 CB50
                123
                               BIT
                                    2,B
                                                 ; no go test another
                               JR
                                    Z, INITA
00AB 28AC
                124
                                                 ; get a zero in A
00AD 97
                               SUB
                125
                                                 ; set current unit as zero
00AE 32F201
                                    (UNIT), A
                1 26
                              LD
                                                 ; make sure controller matches
00B1 D32C
                               OUT
                127 .
                                    (SEL),A
                                                 ; get DSO pointer back
                128
                               POP
                                    ΙX
00B3 DDE1
                                   (UNITPTR), IX; save current unit pointer
                              LD
00B5 DD22F301
               129
                                                 ; done initializing all avail
                              RET
00B9 C9
                130
                131;
```

```
132;
                133:
                              SETUP ROUTINE
               134:
                135:
                136; This routine checks drive validity first, then changes
                137; drives if required. Lastly, it converts block number and
                138: start block to number of sectors and starting sector.
               139;
               140;
               141;
                                                 ; see if valid drive
OOBA FEO4
               142 SETUP:
                              СP
                                    4
                                    C, SETUPA
                                                ; carry is ok
00BC 3804
               143
                               JR
                                                 ; INVALID DRIVE NUMBER
00BE 3E01
               144
                              LD
                                    A,1
                                                 ; set nonzero
00C0 B7
               145
                              O R
                                    Α
                                                 ; go back with error
00C1 C9
               146
                              RET
                                                 ; save start record
00C2 E5
               147 SETUPA:
                              PUSH HL
                                                ; see if same drive
00C3 21F201
               148
                              LD
                                    HL.UNIT
                                                ; zero is same drive
00C6 BE
                149
                              CP
                                    (HL)
00C7 2816
                                                ; don't mess with unitptr
                                    Z.SETUPC
                150
                               JR
                                                : save blocks for a moment
00C9 D5
                               PUSH DE
                151
                                                ; save new unit number
                                    (HL),A
00CA 77
                152
                               LD
                                                ; or in the drive change bit
00CB F608
                153
                               OR
                                    DRICHG
                                                 ; change the controller to new
00CD D32C
                154
                               OUT
                                   (SEL),A
                                                 ; get back fresh unit number
00CF E603
                               AND
                155
                                                 ; table base address less 6
00D1 DD21D401
                156
                               LD
                                    IX,DS0-6
                                                 ; table increment
00D5 110600
                157
                               LD
                                    DE,6
                                                 ; for once thru the loop for
00D8 3C
                               INC
                158
                                    Α
                                                 ; add in the table increment
00D9 DD19
                159 SETUPB:
                               ADD
                                    IX,DE
                                                 ; for each unit number
00DB 3D
                               DEC
                160
                                    Α
                                                 ; not done until unit is zero
00DC 20FB
                161
                                    NZ, SETUPB
                               JR
                                                 ; get blocks back
00DE D1
                162
                               POP
                                   DΕ
00DF DD22F301
                                   (UNITPTR), IX
                                                  current unit ptr
                163 SETUPC:
                               L.D
                                                  get current track for this u
00E3 DD7E05
                164
                                    A.(IX+5)
                               LD
                                                  update the controller
00E6 D329
                165
                               OUT
                                    (TRACK), A
                                                  see if was OFFH
00E8 3C
                166
                               INC
                                    Α
                                                 ; unit is there branch
00E9 2005
                167
                               JR
                                    NZ, SETUPD
                                                  NO DRIVE PRESENT
                               LD
00EB 3E02
                168
                                    A,2
                                                 ; set nonzero
00ED B7
                169
                               OR
                                    Α
                                                 ; get start record back
00EE E1
                               POP
                                    HL
                170
                                                 ; go back with error
00EF C9
                171
                               RET
                                                 ; get starting block back
00F0 E1
                172 SETUPD:
                               POP
                                    HL
                                                 ; see if double density
00F1 DDCB026E
                               BIT
                                    5,(IX+2)
                173
                                                 ; if double no add needed
00F5 2804
                174
                               JR
                                    Z, SETUPE
                                                 ; double start block for secto
00F7 29
                1.75
                               ADD
                                    HL, HL
                                                 ; swap around
00F8 EB
                176
                               ΕX
                                    DE, HL
                                                 ; double blocks for sectors
                               ADD
00F9 29
                                    HL, HL
                177
                                                 ; get back in order
                                    DE.HL
                               ΕX
OOFA EB
                178
                                                 ; get a zero
                               SUB
00FB 97
                179 SETUPE:
                                    Α
                                                 ; into B also
                               LD
00FC 47
                180
                                    B, A
                                                 ; get number od sectors
                                    C,(IX+0)
OOFD DD4EOO
                181
                               LD
                                                 ; divide start block by sector
0100 ED42
                               SBC
                                    HL,BC
                182 DIVIDE:
                                                 ; new track
                               INC
0102 3C
                183
                                    Α
```

```
NC, DIVIDE
                                                 ; not done until overfolw
0103 30FB
                184
                               JR
                                                 ; get remainder back
0105 09
                185
                               ADD
                                    HL,BC
                                                 ; for extra time thru loop
0106 3D
                186
                               DEC
                                    Α
                                                 ; sectors start at one
0107 2C
                187
                               INC
                                                 ; track to H
0108 67
                188
                               LD
                                    H.A
                                                 ; put tr/se in DE blocks in HL
0109 EB
                189
                               ΕX
                                    DE, HL
                                                 ; setup exit code shared by ot
010A 1858
                190
                               JR
                                    SETUPX
                191;
                192;
                193;
                194;
                               SEEK ROUTINE
                195;
                196:
                197; The seek routine gets the head of the selected drive to
                198; the correct track. It then performs the logical to
                199; physical sector mapping if 2 sided.
                200;
                201;
                202;
010C DB29
                203 SEEK:
                               IN
                                    A, (TRACK)
                                                 ; Get current track
                                                 ; same as requested ?
010E BA
                204
                               CP
                                                 ; Brif same
010F 2824
                205
                               JR
                                    Z, SEEKD
                                                 ; get retry count into B
0111 ED4BF501
                206
                               LD
                                    BC, (RTRY-1)
                                                 ; get requested track to A
0115 7A
                207 SEEKA:
                               LD
                                    A.D
0116 D32B
                                                 ; put to controller
                208
                               OUT
                                    (DATA), A
                                                 ; get the step rate
0118 DD7E03
                               LD
                                    A.(IX+3)
                209
                                                 ; or in the seek command
011B F618
                210
                               OR
                                    SEEKCOM
                                                 ; issue seek command
                                    (CMND),A
011D D328
                               OUT
                211
                                    A, (SEL)
                                                 ; wait for completion (bit 7)
011F DB2C
                               ΙN
                212 SEEKB:
                                                 ; into carry
                               ADD
0121 87
                213
                                                 ; not done if no carry
0122 30FB
                214
                               JR
                                    NC, SEEKB
                                                 ; get status of completed seek
0124 DB28
                               ΙN
                                    A. (STAT)
                215
                                                 ; mask only wanted bits
0126 E618
                216
                               AND
                                    SEEKMASK
                                    Z,SEEKD
0128 280B
                                                 ; zero is good seek
                217
                               JΡ
                                                 ; SEEK ERROR
012A 3E03
                218
                               LD
                                    A,3
012C 1002
                                                 ; go to seekc if retrys left
              . 219
                               DJNZ SEEKC
012E B7
                                                   set nonzero
                220
                               OR
                                    Α
012F C9
                                                 ; nonzero error exit
                221
                               RET
                                                 ; get home for reference
0130 CDC501
                222 SEEKC:
                               CALL RESTORE
                                                 ; try all over again
                               JR
                                    SEEKA
0133 18E0
                223
                                                 ; see if 2 sided
0135 DDCB025E
                224 SEEKD:
                               BIT
                                    3,(IX+2)
                                                 ; put sector in C
                               LD
0139 4B
                225
                                    C,E
                                                 ; interrupt and side mask in B
013A 0680
                226
                               LD
                                    B, BOTMASK
                                                 ; Brif NOT 2 sided
                                    Z, NOTTOP
013C 280D
                227
                               JR
                                    A,(IX+0)
                                                  ; get maximum sectors
013E DD7E00
                228
                               LD
                                                   divide them by 2
0141 OF
                               RRCA
                229
                                                  ; still on bottom ?
0142 BB
                               СP
                                    Ε
                230
                                                 ; if no carry still on bottom
                                    NC, NOTTOP
                               JR
0143 3006
                231
                                                 ; save dividing line for top/b
0145 4F
                232
                               LD
                                    C,A
                                                 ; get oversized sector in A
                                    A,E
                               LD
0146 7B
                233
                                                 ; subtract dividing line secto
                               SUB
                                    С
0147 91
                234
                                                  ; put new sector in C
0148 4F
                               LD
                                    C.A
                235
```

```
; interrupt and new side mask
                                   B. TOPMASK
0149 0684
               236
                              LD
                                                ; get unit number in A
                                   A, (SEL)
014B DB2C
               237 NOTTOP:
                              IN
                                                : mask unwanted bits
014D E603
               238
                              AND
                                   3
                                                ; or in interrupt and side inf
014F B0
               239
                              OR
                                   В
                                                ; enable interrupts and put si
0150 D32C
               240
                              OUT
                                   (SEL),A
                                                ; get the sector number
0152 79
                              LD
               241
                                    A,C
                                                ; to controller
0153 D32A
                                   (SECTOR), A
                              OUT
               242
                                                ; save new current track numbe
0155 DD7205
               243
                              LD
                                    (IX+5).D
                                                ; get a zero
0158 97
               244 SEEKXA:
                              SUB
                                                ; shared return code
0159 C9
               245
                              RET
               246:
               247;
               248;
                              INCREMENT SECTOR ROUTINE
               249:
               250;
               251;
               252; The increment sector routine bumps the sector by one and
               253; checks for overflow. If overflow exists, track is
               254; incremented and then checked for out of bounds.
               255;
               256;
               257;
                                                 ; get maximum sectors to A
               258 INCSEC:
                                    A,(IX+0)
015A DD7E00
                              LD
                                                 ; for next sector
                                    E
015D 1C
               259
                              INC
                                                 ; (max sector-sector)
015E 93
               260
                              SUB
                                    Ε
                                                 ; good number exit with a zero
015F 30F7
                261
                               JR
                                    NC, SEEKXA
                                                 ; bumped past start this 1 aga
0161 1E01
                               LD
                                    E,1
               262
                                                 ; next track
0163 14
                263 INCSED:
                               INC
                                    D
               264 SETUPX:
                                    A,(IX+1)
                                                 ; get max tracks
0164 DD7E01
                              LD
                                                 ; for 0 to max-1 not 1 to max
0167 3D
                              DEC
                265
                                    Α
                                                 ; see if overflow
0168 92
                               SUB
                                    D
                266
                                                 ; good number exit with a zero
0169 30ED
                                    NC, SEEKXA
                267
                               JR
                                                 ; BAD TRACK NUMBER
016B 3E04
                268
                               LD
                                    A,4
                               OR
                                                  set nonzero
016D B7
                269
                                    Α
                                                 ; return from INCSEC or SETUP
016E C9
                               RET
                270
                271;
                272;
                273;
                               READ SINGLE SECTOR ROUTINE
                274:
                275;
                276; The read single sector routine reads a single sector and
                277; then returns. Based on the following:
                278;
                                                  output: error output:
                279;
                               input:
                                                                   AF=err Z=0
                               AF= don't Care
                                                 AF=0 Z=1
                280;
                                                 BC= Destroyed
                              BC= don't Care
                281;
                                                 DE= Tr/Se
                              DE= Tr/Se
                282;
                               HL= buffer addr HL= buffer+lengh HL= buffer ad
                283;
                284:
                285;
                286;
                                    DE, (RTRY); get retry count to E
016F ED5BF601
               287 READS:
                              LD
```

```
; save buffer start address
0173 E5
               288 READA:
                              PUSH HL
                                                ; get the read sector command
0174 3E88
               289
                              LD
                                   A.READCOM
                                  (CMND),A
                                                ; issue to controller
0176 D328
               290
                              OUT
0178 0E2F
               291
                              LD
                                                ; wait port number to C
                                   C, WAIT
017A DD4604
               292
                              LD
                                   B.(IX+4)
                                                ; sector length to B
                                                ; enable interrupts
017D FB
               293 READB:
                              ΕI
                                                ; refresh until first byte rea
017E 76
               294
                              HALT
017F EDB2
                                                ; get all the bytes to memory
               295
                              INIR
                                                ; get completion flag (bit 7)
0181 DB2C
               296 READC:
                                   A, (SEL)
                              ΙN
0183 87
               297
                              ADD
                                  Α
                                                ; into carry
0184 3802
                                   C.READD
                                                ; when done carry is one
               298
                              JR
0186 10F9
                              DJNZ READC
                                                ; wait only 256 times for flag
               299
0188 DB28
                                                ; get read sector status
               300 READD:
                                   A. (STAT)
                              ΙN
                                                ; mask only wanted bits
018A E69F
               301
                              AND
                                   READMASK
                                                ; if no errors use common exit
018C 2808
                                   Z, RDWRX
               302
                              JR
018E 1D
               303
                              DEC
                                   E
                                                ; retry again ?
                                                ; get start buffer address
018F E1
               304
                              POP
                                   HL
                                                ; if nonzero retry
0190 20E1
               305
                              JΡ
                                   NZ.READA
                              LD
0192 3E05
               306
                                   A,5
                                                ; READ ERROR
0194 B7
                              OR
               307
                                   A
                                                ; get nonzero
0195 C9
               308
                              RET
                                                : go back with error
               309;
0196 E3
               310 RDWRX:
                              EΧ
                                   (SP), HL
                                                ; swap buffer+length for buffe
0197 E1
                                                ; get incremented in HL
               311
                              POP
                                   HL
0198 97
               312
                              SUB
                                                ; get a zero
                                   Α
0199 C9
               313
                              RET
                                                ; return from READS or WRITES
               314:
               315;
               316:
                              WRITE SINGLE SECTOR ROUTINE
               317;
               319; The Write single sector routine uses the same structure
               320: as the read sector routine.
               321;
               322;
019A ED5BF601
               323 WRITES:
                              LD
                                   DE, (RTRY)
                                                ; get retry count to E
               324 WRITEA:
                                                ; save start buffer address
019E F5
                              PUSH HL
019F 3EA8
                                                ; get the write sector command
               325
                              LD
                                   A.WRITECOM
01A1 D328
                                                ; issue it to the controller
               3 2 6
                              OUT
                                   (CMND), A
                                                ; get the wait port to C
01A3 0E2F
               327
                              LD
                                   C, WAIT
                                   B,(IX+4)
                                                ; get the sector length
01A5 DD4604
               328
                              LD
01A8 FB
               329 WRITEB:
                              EI
                                                ; enable interrupts
01A9 76
                                                ; refresh until first byte nee
               330
                              HALT
                                                ; put the first byte
01AA EDA3
                              OUTI
               331
                                                ; enable interrupts again
01AC FB
               332
                              ΕI
                                                ; refresh until rest needed
01AD 76
               333
                              HALT
                                                ; write the rest of the sector
01AE EDB3
               334
                              OTIR
                                                ; wait for crc write
01B0 DB2C
               335 WRITEC:
                              IN
                                   A, (SEL)
                                                ; completion flag into carry
01B2 87
               336
                              ADD
                                  Α
                                   C.WRITED
                                                ; if complete Branch
01B3 3802
                              JR
               337
                                               ; only wait 256 for completion
01B5 10F9
               338
                              DJNZ WRITEC
                                               ; get write sector status
               339 WRITED:
01B7 DB28
                              ΙN
                                 A, (STAT)
```

```
; mask only wanted bits
                                   WRITMASK
                               AND
01B9 E69F
                340
                                                 ; if zero no errors use com ex
                                    Z, RDWRX
01BB 28D9
                341
                               JΡ
                                                 ; retry again ?
                               DEC
                                    E
01BD 1D
                342
                                                 ; get start buffer address
                343
                               POP
01BE E1
                                    HL
                                                 ; no try again
                                    NZ, WRITEA
01BF 20DD
                344
                               JR.
                                                 ; WRITE ERROR
01C1 3E06
                345
                               LD
                                    A,6
                                                 ; set nonzero
                               OR
                                    Α
01C3 B7
                346
                                                 ; go back with error
                               RET
01C4 C9
                347
                348:
                349;
                350;
                               RESTORE ROUTINE
                351;
                352;
                353; This routine gets the selected drive back to track zero.
                354; It also updates the current track pointer.
                355;
                356;
                                                 ; Get the step rate
                                    A,(IX+3)
                357 RESTORE:
01C5 DD7E03
                               LD
                                                 ; remove the verify bit if set
01C8 E603
                               AND
                358
                                                 ; or in the restore command
                               OR
                                    RESTCOM
01CA F608
                359
                                                 ; issue the restore to control
                               OUT
                                    (CMND), A
01CC D328
                360
                                                 ; get completion bit
                                     A, (SEL)
01CE DB2C
                361 RESTA:
                               ΙN
                                                 ; into carry
                362
                               ADD
01D0 87
                                                 ; not done until carry
                                     NC, RESTA
01D1 30FB
                               JR
                363
                                                 ; update the current track poi
                               LD
                                     (IX+5),0
                364
01D3 DD360500
                                                 ; read to clear the completion
                               ΙN
                                     A, (STAT)
01D7 DB28
                365
                                                  : just return no error checking
                               RET
                366
01D9 C9
                367;
                368;
                369;
                               DRIVE PARAMETER TABLES
                370;
                371;
                372;
                373;
                                                  ; MAXIMUM SECTOR
                                                                      DRIVE 0
                374 DS0:
                               DC
                                     0
01DA 00
                                                                      DRIVE 0
                                                  ; MAXIMUM TRACK
                               DC
                                     0
01DB 00
                375
                                                  ; ATTRIBUTE FLAGS
                                                                      DRIVE 0
01DC 00
                376
                               DC
                                     0
                                                  ; STEP RATE
                                                                      DRIVE 0
01DD 00
                377
                               DC
                                     0
                                                  ; SECTOR LENGTH
                                                                      DRIVE 0
                               DC
                                     0
01DE 00
                378
                                                  ; CURRENT TRACK
                                                                      DRIVE 0
                               DC
                                     OFFH
0.1DF FF
                379
                                     0,0,0,0,0,0FFH; DRIVE 1
                380 DS1:
                               DC
01E0 00000000
                                     0,0,0,0,0,0FFH ; DRIVE 2
                 381 DS2:
                               DC
01E6 00000000
                                     0,0,0,0,0,0FFH; DRIVE 3
                               DC
                 382 DS3:
01EC 00000000
                 383;
                                                  ; CURRENT UNIT NUMBER
                 384 UNIT:
                                DC
01F2 00
                                                  ; CURRENT UNIT TABLE POINTER
                 385 UNITPTR:
                               DC
                                     (DSO)
01F3 DA01
                 386;
                                                  ; READ/WRITE COMMAND STORAGE
                 387 RDWR:
                                DC
                                     0
01F5 00
                                                  ; RETRY COUNT
                                DC
                                     (2)
01F6 0200
                 388 RTRY:
                 389;
                 390;
                 391;
```

```
392:
                            SYSTEM EQUATES
              393:
              394;
              395;
                                            ; BASE ADDRESS OF CONTROLLER
0028
              396 PORT:
                           EQU 050Q
                                             ; CONTROLLER STATUS PORT
0028
              397 STAT:
                           EQU PORT
                                             ; CONTROLLER COMMAND PORT
0028
              398 CMND:
                           EQU PORT
                                             ; CONTROLER CURRENT TRACK PORT
0029
                           EQU PORT+1
              399 TRACK:
                                             ; CONTROLLER REQUESTED SECTOR
AS00
              400 SECTOR: EQU PORT+2
              401 DATA: EQU PORT+3
                                             ; CONTROLLER DATA PORT
002B
                                             ; SELECT AND STATUS PORT
                                PORT+4
002C
              402 SEL:
                            EQU
                                PORT+7
                                             ; CONTROLLER WAIT DATA PORT
002F
              403 WAIT:
                            EQU
                                            ; STANDARD TRACKS AND SECTORS
              404 STDTRSE: EQU
4 D 1 A
                                 77*256+26
                                            ; MINI 1SIDED TRACK AND SECTOR ; MINI 2SIDED TRACKS
2812
              405 MINI1SID: EQU
                                 40*256+18
              406 MINI2SID: EQU
0023
                                 35
                                             ; CONTROLLER SEEK COMMAND
0018
              407 SEEKCOM: EQU
                                030ଢ
                                             ; CONTROLLER RESTORE COMMAND
8000
                                0100
              408 RESTCOM:
                            EQU
                                            ; CONTROLLER READ SECTOR COMMA
0088
              409 READCOM: EQU
                                 210ହ
                                             ; CONTROLLER WRITE SECTOR COMM
              410 WRITECOM: EQU
8A00
                                250Q
                                            ; CONTROLLER READ ERROR MASK
009F
              411 READMASK: EQU 237Q
                                             ; CONTROLLER WRITE ERROR MASK
              412 WRITMASK: EQU 237Q
009F
                                             ; CONTROLLER SEEK ERROR MASK
0018
              413 SEEKMASK EQU 030Q
                                             ; STANDARD DRIVE STEP RATE
                           EQU 5
0005
              414 STDSTEP:
                                             ; MINI DRIVE STEP RATE (MPI)
0004
              415 MINSTEP: EQU
                                4
                                            ; DRIVE CHANGE BIT
8000
              416 DRICHG:
                            EQU
                                10Q
                                            ; INTERRUPT ENABLE AND BOTTOM
                                2000
0800
              417 BOTMASK:
                           EQU
                                            ; INTERRUPT ENABLE AND TOP MAS
0084
              418 TOPMASK:
                            EQU
                                204Q
                                             ; thats all folks
0000
                            END
              419
```

CHAPTER 7

SAMPLE FORMAT PROGRAM

7.1 INTRODUCTION

The Format Program is a callable Subroutine that formats a diskette. On entry the accumulator contains the drive number (0-3). No prompt message is given to avoid clobbering drive 0. There is no error exit and the Format routine assumes that the calling program has verified that the drive actually exists.

A track is formatted by first arranging all the bytes for that track in memory first. This includes all Gap, ID, and Data Fields. The track is then written to the disc during a single revolution.

For Double Density Standard drives, this track buffer is 11K bytes long. Therefore, to run the Format Program, the user requires at least 11.25K bytes of continuous memory PLUS whatever memory the calling program requires.

The Format Program for DISKMON V3.00 is the same as the sample Format Program except that there is a front end for swap messages for drive zero.

The Format Program for OASIS V5.3D uses the same table driven formatter, but is more extensive (more Bells and Whistles) than the sample Format Program.

7.2 FORMAT CODE

```
3 ; Sample Format Program for the Digital Group
              4 ; Double Density Controller Board
              6 ;(C) 1979 by The Digital Group
               8 :Written by:
               9 ;Larry Williams
               10;
               11;
               12;
                                            ; be sure its a valid drive
0000 FE04
               13 FORMAT:
                            СP
                                 11
                                            ; go back if GE 4
               14
                            RET
                                 NС
0002 D0
                                           ; flip drive change bit
                            OR
                                 DRICHG
               15
0003 F610
                                           ; select the desired drive
                            OUT (SEL), A
0005 D32C
               16
                                            ; get back the attributes
                                 A, (SEL)
0007 DB2C
                            ΙN
               17
               18;
               19; Mini INIT routine to find max tracks and sectors
               20;
```

```
HL, STDTRSE; get standard track and sector
0009 211A4D
               21 INIT:
                            LD
                                          ; see if standard
000C CB67
                            BIT
                                 4 . A
               22
                                             ; Brif standard
000E 2809
               23
                            JR
                                 Z, INITA
                                 HL, MINI1SI; get Mini 1sided track and sect
0010 211228
               24
                            LD
0013 CB5F
                                          ; see if 2 sided
               25
                            BIT
                                 3,A
                                 Z, INITA
                                            ; Brif 1 sided
0015 2802
                            JR
               26
                                 H, MINI2SI ; tracks different for 2 sided
0017 2623
               27
                            L.D
                                           ; save the attributes
0019 32DB01
                                 (ATTR), A
               28 INITA:
                            LD
                                             ; get one extra sector
001C 2C
               29
                            INC
                                (NSECTS), HL; save the tracks and sectors
001D 22D701
               30
                            LD
                                 HL, GAPTAB; get gaptable address's
0020 21DC01
               31
                            LD
                                             ; mask only S/D and M/S
0023 E630
                                 60Q
               32
                            AND
                                             ; divide by 2
0025 CB2F
               33
                            SRA
                                 Α
0027 CB2F
               34
                                 A
                                             ; divide by 2
                            SRA
                                          ; get upper half to zero
0029 0600
               35
                            LD
                                 B.0
                                            ; get lower half from A
002B 4F
               36
                            LD
                                 C,A
002C 09
                                 HL, BC
               37
                            ADD
                                            ; add in offset
                                           ; get lower half of gaptab
               38
                                 E,(HL)
002D 5E
                            I.D
                                             ; for next
002E 23
               39
                            INC
                                 HL
                                             ; get upper half of gaptab
002F 56
               40
                            LD
                                 D,(HL)
               41
                                 DE, HL
                                            ; put gaptab in hl
0030 EB
                            \mathbf{E}\mathbf{X}
                                 (TEMP2), HL; save gaptab addr in temp2
               42
0031 22D301
                            LD
                                           ; get offset back in HL
               43
0034 EB
                            EΧ
                                 DE, HL
               44
                                            ; for next
0035 23
                            INC
                                 HL
                                            ; get lower half of sectab
                                 E,(HL)
0036 5E
               45
                            LD
                                             ; for next
0037 23
               46
                            INC
                                 HL
                                            ; get upper half of sectab
0038 56
               47
                            LD
                                 D.(HL)
0039 EB
               48
                            ΕX
                                             ; sectab addr in HL
                                 DE, HL
003A 22D501
               49
                            LD
                                 (TEMP1), HL; save sectab addr in temp1
                                            ; get pair of zeros
003D ED62
               50
                            SBC HL, HL
                                            ; zero side and track temps
003F 22D901
               51
                            LD
                                 (SIDE),HL
                                           ; get a zero to D
0042 EB
               52
                            ΕX
                                 DE, HL
                                             ; get this drive to track 0
0043 CDED00
                            CALL RESTORE
               53 FORMC:
                                             ; save current track
                            PUSH DE
0046 D5
               54 FORMD:
                                             ; format the buffer
                            CALL FORMIN
0047 CD8800
               55
                                             ; write the buffer
                            CALL WRITETR
004A CDCCOO
               56
                                             ; get current track back
004D D1
               57
                            POP DE
                                             ; for next track
004E 14
               58
                            INC D
                                             ; get maximum tracks
004F 3AD801
              59
                            LD
                                 A, (NTRKS)
                                             ; see if done
0052 BA
               60
                            СP
                                 D
                                             ; done with one side
                                  Z,FORMX
0053 2811
               61
                             JR
                                             ; get the new track
                                  A,D
0055 7A
               62 SEEK:
                            LD
                                             ; to controller
                                  (DATA), A
               63
                            OUT
0056 D32B
                                  (TRACKS), A ; save it for formatting
0058 32DA01
               64
                            LD
                                  A, SEEKCOM; slow seek with no verify
               65
                            LD
005B 3E1B
                                  (CMND), A ; issue the command
                            OUT
               66
005D D328
                                             ; wait for completion (bit 7)
                                  A, (SEL)
                            ΙN
005F DB2C
               67 SEEKA:
                                             ; into carry
0061 87
               68
                             ADD
                                  Α
                                            ; no carry is not done
                                  NC, SEEKA
0062 30FB
               69
                             JΡ
                                             : go for another track
                                  FORMD
0064 18E0
               70
                             JR
               71;
               72;
```

```
; see if just formatted top
0066 3AD901
0069 B7
                                   A, (SIDE)
                73 FORMX:
                             LD
                                               ; see if a one
                              OR
                                   Α
                74
                                               ; if one were all done
                                   NZ,FORMXX
                              JR
006A 2018
                75
                                               ; get attributes again
                                   A, (ATTR)
006C 3ADB01
                76
                              LD
                                               ; see if realy 2 sided
006F CB5F
                              BIT
                                   3,A
                77
                                               ; if 1 sided we have to be done
                                   Z,FORMXX
0071 2811
                78
                              JΡ
                                               ; get device number
                                   A, (SEL)
                79
                              ΙN
0073 DB2C
                                               ; mask out all rest
                              AND
                                   3
0075 E603
                80
                                               ; or in top side
                              OR
                                   h
0077 F604
                81
                                               ; select top side
                              OUT
                                   (SEL),A
0079 D32C
                82
                                               ; new side
                              LD
007B 3E01
                83
                                   A, 1
                                               ; save it in the side temp
                                   (SIDE), A
007D 32D901
                84
                              LD
                                               ; start with track zero again
0080 1600
                85
                              LD
                                   D.0
                                               ; go restore and then format
                                   FORMC
                86
                              JR
0082 18BF
                87;
                88;
                                               ; get the drive back to track 0
                              CALL RESTORE
0084 CDED00
                89 FORMXX:
                                               ; go back to calling program
                              RET
0087 C9
                90
                91;
                92;
                93;
                94 ;Track data generation routine
                95;
                                               ; loop count
                96 FORMIN:
0088 0E01
                              LD
                                   C, 1
                                   HL, (TEMP2); get gaptab address
                              LD
008A 2AD301
                97
                                   DE, BUFFER ; the track format buffer
                              LD
008D 11EC01
                98
                                   IY, (TEMP1); IY is the sectab pointer
                              LD
0090 FD2AD501
                99
                                               ; put Gap4b into buffer
                              CALL PUTIT
0094 CDBF00
                100
                                               ; save the start of sectors
                              PUSH HL
0097 E5
                101 FORML:
                                               ; put Gap3 into buffer
                              CALL PUTIT
0098 CDBF00
                102
                103;
                104; Fill The ID field
                105;
                                    A, (TRACKS); get the current track number
                              LD
009B 3ADA01
                106
                                               ; into buffer
                                    (DE),A
                              LD
                107
009E 12
                                                ; for next
                              INC
                                    DΕ
009F 13
                108
                                               ; get the current side number
                                    A, (SIDE)
                              LD
00A0 3AD901
                109
                                                ; into buffer
                110
                              LD
                                    (DE),A
00A3 12
                                                ; for next
                              INC
00A4 13
                                    DΕ
                111
                                                ; get the mapped sector
                              LD
                                    A,(IY+0)
00A5 FD7E00
                112
                                                ; into buffer
                              LD
                                    (DE),A
00A8 12
                113
                                                : for next sector
                               INC
                                    ΙY
                114
00A9 FD23
                                                ; for next
                               INC
                                    DΕ
                115
00AB 13
                                                ; put rest of ID and DATA field
                               CALL PUTIT
OOAC CDBFOO
                 116
                 117;
                 118 :
                                                ; next sector
                               INC
                                    С
 OOAF OC
                 119
                                    A, (NSECTS); get max sectors+1
 00B0 3AD701
                 120
                               LD
                                                ; same ?
                               CP
 00B3 B9
                 121
                                                ; done with data field if zero
                                    Z,FORMIX
                               JR
                 122
 00B4 2803
                                                ; get pointer back to Gap3
                               POP
                                    HL
 00B6 E1
                 123
                                               ; go for another sector
                               JR ·
                                    FORML
 00B7 18DE
                 124
```

```
; throw away top entry on stack
00B9 E3
                             ΕX
                                   (SP), HL
               125 FORMIX:
                                               ; like this
00BA E1
                              POP
                126
                                   HI.
                                               ; now format Gap4a to index hole
OOBB CDBFOO
                              CALL PUTIT
                127
                                               ; done with a track
00BE C9
                128
                              RET
               129;
                130;
                131 ;
                              Putit routine
                132;
                133 ;Gets byte pairs from Gaptab. First byte is count
                134; and second byte is value. If both are zero, stop.
               135 ;
00BF 46
                136 PUTIT:
                              I.D
                                   B, (HL)
                                               ; get repeat count
                                               ; for second byte
00C0 23
               137
                              INC
                                   HL
                                               ; get value
00C1 7E
                              I.D
                                   A, (HL)
                138
                                               ; for next
                              INC
00C2 23
                                   HL
                139
                                               ; see if both zero
0003 80
                              ADD
                                   B
                140
                                               ; go back if both zero
00C4 C8
                141
                              RET
                                   Z.
                                               ; restore value
00C5 90
               142
                              SUB
                                   В
                                               ; start putting the value
00C6 12
                143 LOOPIT:
                              LD
                                   (DE),A
00C7 13
                                               ; for next
                144
                              INC DE
00C8 10FC
                                               ; until B is zero
                              DJNZ LOOPIT
                145
                                               ; go for another byte pair
00CA 18F3
                146
                              JR
                                   PUTIT
                147;
                148;
                149;
                              Write Track routine
                150;
                151 ; Writes 11,000 bytes to drive whether or not the
                152 ; drive requires that many.
                153 ;
                154 :
                                               ; wait port to C
00CC 012F00
                                   BC, WAIT
                155 WRITETR: LD
                                               ; where the data is
00CF 21EC01
                              LD
                                   HL, BUFFER
                156
                                               ; data ready mask and loop count
00D2 112BC0
                              LD
                                   DE, MASK
                157
                                               ; the write track command
00D5 3EF4
                158
                              LD
                                   A, WTRKCOM
                                               ; issue to controller
00D7 D328
                              OUT
                                   (CMND), A
                159
                                               ; wait for first byte
00D9 DB2C
                160 WRITEA:
                              ΙN
                                   A, (SEL)
                                               ; see if ready
OODB A2
                161
                              AND
                                   D
                                               ; wait until first is ready
00DC 28FB
                162
                              JR
                                   Z, WRITEA
                                               ; put first byte
OODE EDA3
                163
                              OUTI
                                               ; wait for the rest
                164 WRITEB:
                                   A, (SEL)
OOEO DB2C
                              ΙN
                                               ; fast check
00E2 A2
                165
                              AND
                                   D .
                                   Z,WRITEB
                                               ; faster that JR
OOE3 CAEOOO
                166
                              JΡ
00E6 EDB3
                                               ; put a bunch of bytes
                167 WRITEC:
                              OTIR
                                               ; 256 times E
00E8 1D
                168
                              DEC
                                               ; not done yet
                              JΡ
                                   NZ, WRITEC
00E9 C2E600
                169
                                               ; put all bytes and then some
00EC C9
                170
                              RET
                171;
                172;
                173;
                              Restore routine
                174;
                175;
                                   A, RESTCOM; restore command
OOED REOB
                176 RESTORE: LD
```

```
; to controller
                              OUT
                                   (CMND), A
                177
00EF D328
                                               ; wait for completion
                                   A, (SEL)
                178 RESTA:
                              ΙN
00F1 DB2C
                                               ; into carry
                              ADD
00F3 87
                179
                                               ; not done yet
                                   NC.RESTA
00F4 30FB
                180
                              JR
                                               ; clear completion flag
                                   A, (STAT)
00F6 DB28
                181
                              ΤN
                                               ; go back
                182
                              RET
00F8 C9
                183
                    ;
                184
                    ;
                185
                    ;
                186
                    ;
                              The Gap and Sector Tables
                187
                188
                189 ; All data following MUST be in this order !!!
                190;
                191
                                   014,255,006,000,001,252,014,255,000,000
                192 MINI:
                              DC
00F9 0EFF0600
                                   008,255,006,000,001,254,000,000,001,000
C103 08FF0600
                193
                              DC
                                   001,247,011,255,006,000,001,251,128,229
                194
                              DC
010D 01F70BFF
                                   001,247,000,000,000,255,128,255,000,000
                              DC
0117 01F70000
                195
                196
                    ;
                197
                                   028,078,012,000,003,246,001,252,028,078
0121 1C4E0C00
                198 MINID:
                              DC
                                   000,000,016,078,008,000,003,245,001,254
012B 0000104E
                199
                              DC
                                   000,000,001,001,001,247,022,078,012,000
                              DC
0135 00000101
                200
                                   003,245,001,251,000,064,001,247,000,000
                              DC
013F 03F501FB
                201
                              DC
                                   000,078,000,078,000,000
0149 004E004E
                202
                203
                    ;
                204
                                   040,255,006,000,001,252,026,255,000,000
                              DC
014F 28FF0600
                205 STD:
                                   006,000,001,254,000,000,001,000,001,247
                              DC
0159 060001FE
                206
                                   011,255,006,000,001,251,128,229,001,247
                              DC
0163 OBFF0600
                207
                                   027,255,000,000,128,255,000,255,000,000
016D 1BFF0000
                208
                              DC
                209
                210
                                    080,078,012,000,003,246,001,252,050,078
                              DC
                211 STDD:
0177 504E0C00
                                   000,000,012,000,003,245,001,254,000,000
                              DC
0181 00000C00
                212
                                    001,001,001,247,022,078,012,000,003,245
                              DC
                213
018B 010101F7
                                    001,251,000,064,001,247,054,078,000,000
                214
                              DC
0195 01FB0040
                                    000,078,000,078,128,078,000,000
                215
                              DC
019F 004E004E
                216;
                217
                                    01,02,03,04,05,06,07,08,09,10,11,12,13
                              DC
01A7 01020304
                218 SECA:
                                    14,15,16,17,18,19,20,21,22,23,24,25,26
                              DC
01B4 0E0F1011
                219
                220
                     ;
                221
                     ;
                222 ;
                223 SECB:
                              DC
                                    01,10,02,11,03,12,04,13,05
01C1 010A020B
                                    14,06,15,07,16,08,17,09,18
                              DC
01CA 0E060F07
                224
                225
                              MUST BE IN THIS ORDER
                226
                     ;
                227
                                    (0)
                                                ; Gaptable pointer
01D3 0000
                228 TEMP2:
                              DC
```

```
; Sec table pointer
                             DC
                                  (0)
01D5 0000
               229 TEMP1:
                                             ; max sectors+1
                             DC
01D7 00
               230 NSECTS:
                                  0
                                             ; max tracks
               231 NTRKS:
                             DC
                                  0
01D8 00
                                             ; side
                             DC
                                  0
               232 SIDE
01D9 00
                                             ; current track
               233 TRACKS:
                             DC
                                  0
01DA 00
                                             ; attribute bits
                             DC
                                  0
               234 ATTR:
01DB 00
               235;
               236;
                                  (STDD), (SECA), (MINID), (SECB)
01DC 7701A701
               237 GAPTAB:
                             DC
                                  (STD), (SECA), (MINI), (SECB)
01E4 4F01A701
               238
                             DC
               239;
                                              : write buffer starts here
               240 BUFFER:
                             EQU $
01EC
               241;
               242 ;
               243 ;
                             System equates
               244 :
               245;
                                             ; controller base address
                             EQU
                                  0500
               246 PORT:
0028
                                             ; controller status port
                                  PORT
               247 STAT:
                             EQU
0028
                                             ; controller command port
                                  PORT
                             EQU
               248 CMND:
0028
                                             ; controller data port
                                  PORT+3
               249 DATA:
                             EQU
002B
                                             ; select and side port
                             EQU
                                  PORT+4
               250 SEL:
002C
                                             : data wait port
               251 WAIT:
                                  PORT+7
                             EQU
002F
                                              ; drive change bit
               252 DRICHG:
                             EQU
                                  20Q
0010
                                             ; standard track and sector
                253 STDTRSE: EQU
                                  77 * 256 + 26
4 D 1 A
                                  40*256+18; mini track and sector 1 sided
                254 MINI1SI: EQU
2812
                                             ; mini track 2 sided
                255 MINI2SI: EQU
0023
                                  35
                                             ; seek slow no verify
                256 SEEKCOM: EQU
                                  33Q
001B
                                             ; restore slow no verify
                                  13Q
               257 RESTCOM: EQU
000B
                                             ; write track command
                258 WTRKCON: EQU
                                  364Q
00F4
                                  192*256+43; wait mask and loop count
               259 MASK:
                             EQU
C02B
                             END
               260
0000
```

APPENDIX A

PARTS LIST BY VALUE

DIGITAL GROUP DOUBLE DENSITY DISK CONTROLLER PARTS LIST

LABEL	DESCRIPTION	QUANTITY	PART #
IC19 IC5	7400 quad 2-input NAND 74LS00 quad 2-input NAND	1 1	075-000 075-046
IC16	74LS02 quad 2-input NOR	1	075-048
	7404 hex inverter	4	075-004
IC21	7406 hex inverter O.C.	1	075-005
IC15	74LS08 quad 2-input AND	. 1	075-081
IC23	7408 quad 2-input AND	2	075-007
IC17	74LS14 hex inverter S.T.	1	075-075
IC14	7420 dual 4-input NAND	1	075-011
IC36	74LS27 triple 3-input NOI	R 1 2	075 - 071 075 - 012
IC32,48	7430 eight input NAND 7432 quad 2-input OR	2	075-012
IC18,31 IC38,39,40	7432 quad 2-input On 7438 quad 2-input NAND O.		075-014
IC33	7442 binary to decimal co		075-016
TC2.7.20.24.3F	5 7474 dual D Flip Flop	5	075-019
IC45	7475 quad latch	1	075-020
IC6	7486 quad Exclusive OR	1	075-021
IC1,4,25	74123 Dual One Shot (TI)	3	075-029
IC8	74S124 Dual VCO (TI)	1	075-076
IC28	74139 dual 2 to 4 Demult	. 1	075-077
IC11	74153 dual 4 to 1 Mult.	1	075-034
IC10	74161 Binary counter	1	075-072
IC41	74175 quad D Latch	1	075-040
	74LS221 dual One Shot (T		075-078
	81LS95/97 Octal Buffer	1 nv. 2	075-074 075-073
IC42,43	81LS96/98 Octal Buffer In 74367 Hex buffer	nv. 2	075-044
IC37 IC34	LM3302 quad Comparitor	1	078-006
IC3	NE555 Timer	1	078-002
IC9	LM741 Op Amp	1	078-004
IC22	LM318 Op Amp	1	078-015
IC29	FD1791-1 Controller IC	1	073-031
R42	47 Ohm 1/4w Resistor	1	001-006
R30,31	120 Ohm 1/4w Resistor	2	001-074
R12,13,14	150 Ohm 1/4w Resistor	5	001-011
R15,17		4	001 015
R22	270 Ohm 1/4w Resistor	1 1	001 - 015 001 - 016
R25	330 Ohm 1/4w Resistor	1 1	001-018
R33,37,49,50	470 Ohm 1/4w Resistor	3	001-015
R28,36,38	1K Ohm 1/4w Resistor	8	001-029
R9,18,19,20 R21,27,34,39	2.2K Ohm Resistor	U	001-023

LABEL	DESCRIPTION	QUANTITY	PART #
IC26 R7 R44,45 R29 R43 R46 R6,10 R4 R8 R23,24,32,40 R41,47,48	2.2K Ohm RPACK 2.7K Ohm 1/4w Resistor 3.3K Ohm 1/4w Resistor 3.9K Ohm 1/4w Resistor 4.7K Ohm 1/4w Resistor 5.6K Ohm 1/4w Resistor 6.8K Ohm 1/4w Resistor 7.5K Ohm 1/4w Resistor 9.1K Ohm 1/4w Resistor 10K Ohm 1/4w Resistor	1 1 2 1 1 1 2 1 1 7	008-002 001-030 001-052 001-078 001-032 001-035 001-053 001-054 001-037
R2 R11 R1 R3 R35	15K Ohm 1/4w Resistor 27K Ohm 1/4w Resistor 33K Ohm 1/4w Resistor 820K Ohm 1/4w Resistor 5K 10 Turn Trim-Pot	1 1 1 1	001-039 001-008 001-041 001-080 005-013
C10,11,12,13 C14,34 C53 C66 C52,74 C65 C32,54 C70,73 C49,50 C48 C15 C40,42,43,68 C9,61,62,71 C16,39 C72 C1-8,17-31,33 C35-38,41,44-6 C51,55-60,63,6 C67,69,75	47	tor 1 itor 1 itor 2 itor 1 citor 2 cr 2 tor 1 cr 4 cr 4 cr 1	018-002 018-006 018-012 018-004 018-015 018-000 014-002 016-028 016-029 014-021 010-002 010-003 010-008 010-009 014-003
D1,3,4,5-20 D2	1N4148 Diode 1N4731A 4.3V Zener Diod	10 e 1	040-006 040-025

LABEL	DESCRIPTION	QUANTITY	PART #
X 1	4.000 Mhz Crystal	1	030-011
L1	22uh Choke	1	055-004
	8 Pin Socket	7	060-000
	14 Pin Socket	27	060-001
	16 Pin Socket	14	060-002
	20 Pin Socket	3	060-013
	40 Pin Socket	1	060-006
	PC Board	1	090-078
	#30 Wire #24 Solid Wire	3 ' 1 '	110-010 110-050
	System Manual Installation Manual Hmon/2 Users Manual Hmon/2 Cassette	1 1 1	298-139 298-140 296-088 299-917
	CPU MODIF	CICATION KI	Т
R7 D1,D2,D3	22K Ohm 1/4w Resistor 1N4148 Diode #30 wire	1 3 2'	001-040 040-006 560-003

APPENDIX A

PARTS LIST BY LABEL

INTEGRATED CIRCUITS

LABEL	DESC	LABEL	DESC	LABEL	DESC
=====	====	=====	====	=====	====
IC1	74123	IC18	7432	IC35	7474
IC2	7474	IC19	7400	IC36	74LS27
IC3	NE555	IC20	7474	IC37	74367
IC4	74123	IC21	7406	IC38	7438
IC5	74LS00	IC22	LM318	IC39	7438
IC6	7486	IC23	7408	IC40	7438
IC7	7474	IC24	7474	IC41	74175
IC8	748124	IC25	74123	IC42	81LS96/98
IC9	LM741	IC26	2.2RP	IC43	81LS96/98
IC10	74161	IC27	7404	IC44	81LS95/97
IC11	74153	IC28	74139	IC45	7475
IC12	74LS221	IC29	1791-1	IC46	7404
IC13	74LS221	IC30	7404	IC47	NOT USED
IC14	7420	IC31	7432	IC48	7430
IC15	74LS08	IC32	7430	IC49	7404
IC16	74LS02	IC33	7442		
IC17	74LS14	IC34	LM3302		

RESISTORS

LABEL	DESC	LABEL	DESC	LABEL	DESC
=====	====	=====	====	=====	====
R 1	33K	R18	2.2K	R35	5K POT
R2	15K	R19	2.2K	R36	1 K
R3	820K	R20	2.2K	R37	470
R4	7.5K	R21	2.2K	R38	1 K
R5	11K	R22	270	R39	2.2K
R6	6.8K	R23	1 0 K	R40	1 O K
R7	2.7K	R24	10K	R41	10K
R8	9.1K	R25	330	R42	47
R9	2.2K	R26	2.2RP	R43	4.7K
R10	6.8K	R27	2.2K	R44	3.3K
R11	27 K	R28	1 K	R45	3.3K
R12	150	R29	3.9K	R46	5.6K
R13	150	R30	120	R47	10K
R14	150	R31	120	R48	1 O K
R15	150	R32	10K	R49	470
R16	NOT USED	R33	470	R50	470
R17	150	R34	2.2K		

CAPACITORS

LABEL	DESC ====	LABEL	DESC ====	LABEL =====	DESC ====
C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 C17 C18 C19 C10 C12 C12 C13	.1 uf 50 pf 50 pf 50 pf 50 pf 22 uf .1 uf .1 uf .1 uf .1 uf .1 uf	C26 C27 C28 C29 C30 C31 C32 C33 C33 C35 C37 C38 C41 C42 C44 C44 C44 C44 C44 C44 C44 C44 C44	.1 uf	C51 C52 C53 C554 C556 C559 C659 C661 C663 C664 C666 C70 C71 C73	.1 uf 220 pf 36 pf 1000 pf .1 uf .1 uf .1 uf .1 uf .1 uf 10 uf 10 uf 10 uf .1 uf .1 uf .1 uf .1 uf .1 uf
C24 C25	.1 uf .1 uf	C49 C50	.01 uf .01 uf	C74 C75	220 pf .1 uf
				IODES	
LABEL ===== D1 D2 D3 D4	DESC ==== 1N4148 1N4731A 1N4148 1N4148	LABEL ===== D5 D6 D7 D8	DESC ==== 1 N4148 1 N4148 1 N4148	LABEL ==== D9 D10	DESC ==== 1 N 4 1 4 8 1 N 4 1 4 8

IC SOCKETS

DESC	LABEL	DESC	LABEL	DESC
====	=====	====	=====	====
16 Pin	IC19	14 Pin	IC37	16 Pin
14 Pin	IC20	14 Pin	IC38	14 Pin
8 Pin	IC21	14 Pin	IC39	14 Pin
16 Pin	IC22	8 Pin	IC40	14 Pin
14 Pin	IC23	14 Pin	IC41	16 Pin
14 Pin	IC24	14 Pin	IC42	20 Pin
14 Pin	IC25	16 Pin	'IC43	20 Pin
16 Pin	IC26	16 Pin	IC44	20 Pin
8 Pin	IC27	14 Pin	IC45	16 Pin
16 Pin	IC28	16 Pin	IC46	14 Pin
16 Pin	IC29	40 Pin	IC47	NOT USED
16 Pin	IC30	14 Pin	IC48	14 Pin
16 Pin		14 Pin	IC49	14 Pin
14 Pin		14 Pin	IC50	8 Pin
		16 Pin	IC51	8 Pin
		14 Pin	IC52	8 Pin
				8 Pin
	16 Pin 14 Pin 8 Pin 16 Pin 14 Pin 14 Pin 14 Pin 16 Pin 16 Pin 16 Pin 16 Pin 16 Pin	The series	The state of the	### ### ### ### ### ### ### ### ### ##

MISC

DESC LABEL ===== ==== 4.000 Mhz XTAL X 1 22 uh Choke L1

DOUBLE DENSITY SYSTEM MANUAL APPENDIX C: DRIVE ATTRIBUTE SOCKET DEFINITION

APPENDIX C

DRIVE ATTRIBUTE SOCKET DEFINITION

There are four 8 Pin Sockets for selecting drive attributes for the four possible drives. The Sockets are numbered IC50, 51, 52, 53 on the Component Placement Diagram. On the Printed Circuit board, they are labeled 1, 2, 3, and 4. The socket numbers correspond to drives DS1 through DS4.

The following table shows which diodes are to be installed for each particular attribute. Diodes should be bent on .3" centers and then installed with the band to the right. (As viewed from the component side.)

BOARD LABEL	SCHEMATIC LABEL	DIODE	NO DIODE
========	=======================================	====	======
EN	A	DRIVE PRESENT	NO DRIVE
SD	В	SINGLE DENSITY	DOUBLE DENSITY
MS	С	MINI DRIVE	STANDARD DRIVE
28	D	2 SIDED	1 SIDED

DUBLE DENSITY SYSTEM MANUAL APPENDIX D: BOARD ADDRESSING

APPENDIX D

BOARD ADDRESSING

The board is addressed by jumpering the true or complement of each address line A3-A7 to IC48 through jumper pads at IC47.

To select the base address, first, write down the binary equivalent for each address bit A3-A7. Then place a jumper in the true position for each address line where the binary value is a one. Next, place a jumper in the complement position for each address line where the binary value was a zero. Example:

To Select the Base address of 050Q:

A7 A6 A5 A4 A3
O O 1 O 1

Then jumper: A5 and A3 true

Then jumper A7 A6 and A4 complement

This should look like the following:

All Digital Group Software expects the Base Address of the Double Density Controller board to be 050Q or 28H.

APPENDIX E

ONE SHOT TIMINGS

The following is a table of the One Shot timings and their tolerance:

IC ==	R VALUE	C VALUE OUTPU	T PIN	TIME ====	TOL ===
IC1	R8 9.1K	C74 220 pf	13	800 ns	+-10%
1C3	R3 820K	C9 10uf	3	10sec	+-20%
IC4	R1 33K	C72 100uf	12	1 sec	+-20%
IC4	R2 15K	C71 10 uf	4	35 ms	+-10%
IC12	R5 11K	C11 50 pf	4	450 ns	+-10%
IC12	R6 6.8K	C12 50 pf	5	250 ns	+-10%
IC13	R4 7.5K	C10 50 pf	4	300 ns	+-10%
IC13	R7 2.7K	C13 50 pf	12	150 ns	+-10%
IC25	R10 6.8K	C14 50 pf	5,12	200 ns	+-10%
IC25	R11 27K	C15 50 pf	.4	160 us	+-20%

DOUBLE DENSITY SYSTEM MANUALAPPENDIX F: WRITE PRECOMPENSATION TIMING DIAGRAM

APPENDIX F

WRITE PRECOMPENSATION TIMING DIAGRAM

The following timing diagram shows the relationship between the four one shots IC12 and IC13.

WRITE PRECOMPENSATION

APPENDIX G

WAIT LOGIC TIMING DIAGRAM

The following timing diagram shows the relationship between the wait logic, controller select, and the wait line.

WAIT LOGIC

DOUBLE DENSITY SYSTEM MANUAL APPENDIX J: SOFTWARE COMPATIBILITY (OLD VS NEW)

APPENDIX J

SOFTWARE COMPATIBILITY (OLD VS NEW)

APPENDIX K

APPLICATION NOTE #1

USING INTERRUPTS

Care should be exercised when using interrupts simultaniously with the Digital Group Double Density Controller Board.

If you are using interrupts, be sure that the circuits that can generate these interrupts are disabled before entering the Disc Driver. The High on IC40 Pin 10 can be used to disable other board interrupts.

Also remember that the Disc Driver returns with interrupts disabled and Interrupt Mode Zero selected.

If you call the Disc Driver from numerous locations, it might be wise to modify the Disc Driver to perform the other interrupt disables. This can be done by disabling the other interrupts just after the Disc Driver enables its board interrupt. Your reenable code should be placed after the Disc Driver disables its board interrupts.

APPENDIX L

APPLICATION NOTE #2

OPTIMIZING TIMING VALUES

The Digital Group Double Density Controller Board has some timings that are a tradeoff between Standard and Mini Drives. These are the wait timeout and the head load delay. The Write Precompensation circuit is not needed if the user is not going to be running Standard Double Density.

If you are going to run Mini Drives exclusivly, the Write Precompensation circuit should be disabled. To do this:

- 1. Lift IC12 Pin 5 from its socket.
- 2. Jumper IC29 Pin 31 to IC38 Pin 5.

Also, if you are to run Mini Drives only, set the head load delay timer to the manufacturers specs.

If you are going to run Standard drives only, you should reduce the Wait timeout timer. This can be done by using the procedures outlined in the Testing Section. Set the Wait Timeout Timer to 2.5 times the slowest Byte rate to be used.

APPENDIX M

APPLICATION NOTE #3

3 LOGICAL TO 2 PHYSICAL DRIVES

If you have a two drive system and want to run the second drive in both single and double density, this procedure might help.

Select the second drive as both DS2 and DS3. This is done by placing a black shorting plug on both DS2 and DS3 at the drive. Now, on the controller board, Select drive DS2 as present and single density. Select drive DS3 as present and double density.

For Diskmon, you can operate the system by just changing media and then changing the drive number you use. Example:

- 1. Have the Single density media in drive 1.
- 2. Perform a D#1 command.
- 3. Now place the double density media on drive 1.
- 4. Perform a D#2 command.

For OASIS, the above type logic also works but, after you have changed the media, 'MOUNT' the new media every time.

APPENDIX N

APPLICATION NOTE #4

MULTI HOLE DISKETTES

The Digital Group Double Density Controller Borad will operate on both single and multi-hole diskettes.

This can be accomplished by changing the 800/801 jumper on your drive accordingly.

Should you forget to change from 800 to 801 some unusual things happen. If the controller is requested to read or write a sector and this sector appears before 10 sector holes go by, it will read or write it without error. But if the requested read or write sector is farther around the diskette than 10 sector holes a RECORD NOT FOUND error is generated.

Therefore, if the reliability of your system just changed, and you are switching between single and multi-hole diskettes, CHECK THE 800/801 JUMPER.

APPENDIX O

APPLICATION NOTE #5

BRINGING OUT THE DRIVE ATTRIBUTE DIODES

The Drive Attribute diodes may be brought out to an external set of switches and diodes. This is done by cutting in half a 16 pin header socket. Ribbon cable should be used to bring out the desired attributes. Maximum length of this cable can vary but, try to keep the cable short. Study the following schematic for construction tips:

Bringing out the drive attribute diodes

APPENDIX P

APPLICATION NOTE #6

USING MORE THAN 4 DRIVES

The Digital Group Double Density Controller was designed for only 4 drives. This can be modified to 8 drives by external circuitry. Expanding to 8 drives isn't without sacrifice though, the user will loose the side bit to get to 8 Drives. The following schematic shows a typical method for getting to 8 drives:

APPENDIX Q

APPLICATION NOTE #7

2.5 MHZ VS 4 MHZ

At this writing (4/79) the Digital Group does NOT support a 4 Mhz Z80 System. The Digital Group Double Density Controller board has been thoroughly tested at 4 Mhz. It was found during this testing that the wait logic release was too fast for 4 Mhz operation. To fix this problem, 1/2 of IC2 was used to delay the release of wait to meet 4 Mhz operating conditions. To operate the controller board at 4 Mhz requires the following:

- (1). Cut the default jumper trace to the right of IC2.
- (2). Install a jumper wire to the other pad near IC2.

It might be noted here that the present Dynamic Memory board will NOT run at 4 Mhz due to insufficient T(ras) Precharge time during M1.

APPENDIX R

APPLICATION NOTE #8

DYNAMIC MEMORY AND REFRESH

The following is a table of the different refresh rates, for the different types of drives, during a sector data transfer. (using the INIR and OTIR instructions):

DRIVE TYPE	REFRESH PULSES	REFRESH RATE (128)
STANDARD DOUBLE DENSITY	2 per 16 us	0.5 ms
STANDARD SINGLE DENSITY	2 per 32 us	1.0 ms
MINI DOUBLE DENSITY	2 per 32 us	1.0 ms
MINI SINGLE DENSITY	2 per 64 us	2.0 ms
========	=======================================	=======================================

Note that the Mini single density requires a full 2.0 ms to refresh all 128 columns. Some of the Digital Group Dynamic boards shipped prior to 3/79 had Integrated Circuits that did not meet the 2.0 ms refresh rate at all temperatures.

If the user has a Dynamic Memory board with Fairchild 4027-7 IC's, AND intends to run Mini Standard Density, a memory test is in order.

Perform alternate memory writes, followed by heavy disc accesses, then followed by memory reads, to verify the data written in the memory is still valid. Try this test at high temperatures. That is, a temperature that is slightly above the temperature you expect your system to operate at normally.

Note: We don't expect you to have problems but, we want you to be aware of the situation.

APPENDIX S

APPLICATION NOTE #9

SHUGART DRIVE SYMMETRY ADJUST

If you experience an abnormal amount of read errors during double density operation and your free running VCO is set properly (tol: +5% and -0%), your drive might need a symmetry adjustment.

To perform the adjustment, you will need the following:

- (1). HMON/2 Monitor
- (2). 15 Mhz Triggered Sweep Oscilloscope
- (3). Shugart Maintainance Manual

What we will be doing is alternately writing a pattern of all ones and then all zeros onto the media. We will then check for bit jitter between alternating bits. The purpose is not to remove the jitter completely (would be nice though) but to distribute the jitter equally between the one and the zero patterns.

If you have any problems during this adjustment, PLEASE consult the Digital Group Repair Department before continuing. (You could mess up the symmetry so bad that no reading is possible at all.)

Proceedure:

- (1). Load HMON/2 and execute option 5.
- (2). Place an "expendable" diskette in the drive to be adjusted.
- (3). Select the desired drive with the following:
 - (a). Execute: OUT-54, (drive number 0-3) (cr)
- (4). Get the selected drive to Track 76 by the following:
 - (a). Execute: TRK-114 (cr)
 - (b). Wait for the stepping to finish.
 - (c). Execute: Control C

- (5). Trigger the scope on the rising edge of test point 16. Also, observe the pattern on test point 16 for all of the following. (Vert Amplitude 1V per cm)
- (6). The ONE Pattern:
 - (a). Execute: ONE:TRK-114 (cr)
 - (b). Set sweep to 1us per cm.
 - (c). Observe the jitter on 2nd and 4th pulses.
 - (d). Adjust R57 to minimumize the jitter.
 - (e). Execute: Control C.
- (7). The ZERO Pattern:
 - (a). Execute: ZER:TRK-114 (cr)
 - (b). Set sweep to 2us per cm.
 - (c). Observe the jitter on 2nd and 4th pulses.
 - (d). Adjust R57 to minimumize the jitter.
 - (e). Execute: Control C
- (8). Repeat steps 6 and 7 alternately until the jitter is eliminated completely or is evenly distributed between the One and Zero Pattern.
- (9). If you can't get the jitter below 300 ns, consult the Digital Group Repair Department.
- (10). Reformat the diskette as Track 76 is blown.

APPENDIX T

APPLICATION NOTE #10

INNOVEX DRIVES

It is unknown at this time if the Innovex drive will handle double density.

For single density though, the Digital Group Double Density Controller will operate with one modification.

The Controller board lacks the Track Greater that 43 Signal. It should be noted that the Innovex drives lack the Side signal. To provide the TG43 signal to the Innovex drives, we must disable the Side logic to the drive and enable the TG43 signal. Somewhat by choice, the side signal is present on the very line that the Innovex requires the TG43 signal. To switch these, perform the following:

- (1). Cut the trace leading to IC40 Pin 13.
- (2). Jumper the TG43 signal from IC29-29 to IC40-13.

This Modification removes the Side signal from Controller 36 Pin edge connector Pin 21 and in its place substitutes the TG43 signal.

DOUBLE DENSITY DISK CONTROLLER BOARD

For greater VCO stability replace L1 with a +5 voltage regulater, mounted on the back of the board.

	MODIFIC/	TION OF DOUBLE DENS	ITY	
SCALE:		APPROVED BY	DRAWN BYCAROLN F	
	DATE: 6-16-82		REVISED	
			DRAWING NUMBER	