8192-BIT READ ONLY MEMORIES
ROW SELECT CHARACTER GENERATORS

The MCM6570 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 characters in a 7 x 9 matrix, and has the capability of shifting certain characters that normally extend below the baseline, such as j, y, g, p, and q. Circuity is supplied internally to effectively lower the whole matrix for this type of character — a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic "1"s and "0"s stored in a 7 x 9 matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the 7 x 9 character in one of two pre-programmed positions on the 16-row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The MCM6571, MCM6571A, and MCM6572 thru MCM6579 are pre-programmed versions of the MCM6570. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Static Operation
- TTL Compatibility
- CMOS Compatibility (5 V)
- Shifted Character Capability (Except MCM6572, MCM6573)
- Maximum Access Time = 500 ns

ABSOLUTE MAXIMUM RATINGS (See Note 1. Voltages referenced to VSS)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltages</td>
<td>VCC</td>
<td>-0.3 to +6.0</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>-0.3 to +15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBB</td>
<td>-10 to +0.3</td>
<td></td>
</tr>
<tr>
<td>Data Input Voltage</td>
<td>V(IN)</td>
<td>-0.3 to +15</td>
<td>Vdc</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T(A)</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TSTG</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

---

MCM6570
MCM6571
MCM6571A
MCM6572
thru
MCM6579

MOS
(N-CHANNEL, LOW THRESHOLD)
8 K
READ ONLY MEMORIES
HORIZONTAL-SCAN
CHARACTER GENERATORS
WITH SHIFTED CHARACTERS

PIN ASSIGNMENT

1. VBB RS3 24
2. VCC RS2 23
3. VDD RS1 22
4. A6 RS0 21
5. D5 D6 20
6. D4 D3 19
7. D1 D2 18
8. A5 D0 17
9. A4 A1 16
10. N.C. A0 15
11. A3 N.C. 14
12. A2 VSS 13

© MOTOROLA INC. 1975

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{SS}$).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>$V_{DD}$</td>
<td>10.8</td>
<td>12</td>
<td>13.2</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td>$V_{CC}$</td>
<td>4.75</td>
<td>5.0</td>
<td>5.25</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td>$V_{SS}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td>$V_{BB}$</td>
<td>-3.3</td>
<td>-3.0</td>
<td>-2.7</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input Logic &quot;1&quot; Voltage (Driven by TTL)</td>
<td>$V_{IH}$</td>
<td>3.0</td>
<td>5.0</td>
<td>$V_{CC}$</td>
<td>Vdc</td>
</tr>
<tr>
<td>(Driven by Other Than TTL)</td>
<td>$V_{IH}$</td>
<td>4.0</td>
<td>5.0</td>
<td>$V_{CC}$</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input Logic &quot;0&quot; Voltage</td>
<td>$V_{IL}$</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

*A 4.0 V $V_{IH}$ is required at the chip regardless of the type of driver used. However, internal MOS pullup devices on the chip can pull one TTL driver from 3.0 V to 4.0 V, without affecting access time. These pullup devices may not pull non-TTL drivers above 3.0 V.*

DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Forward Current ($V_{IH}$ = 0.4 Vdc)</td>
<td>$I_{IL}$</td>
<td>–</td>
<td>–</td>
<td>-1.6</td>
<td>mA</td>
</tr>
<tr>
<td>Input Leakage Current ($V_{IH}$ = 5.25 Vdc, $V_{CC}$ = 4.75 Vdc)</td>
<td>$I_{IH}$</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Output Low Voltage (Blank) ($I_{OL}$ = 1.6 mA)</td>
<td>$V_{OL}$</td>
<td>0</td>
<td>–</td>
<td>0.4</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output High Voltage (Dot) ($I_{OH}$ = 40 μA)</td>
<td>$V_{OH}$</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
<td>Vdc</td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>$I_{DD}$</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$I_{CC}$</td>
<td>–</td>
<td>–</td>
<td>125</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$I_{BB}$</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>$P_{D}$</td>
<td>–</td>
<td>600</td>
<td>800</td>
<td>mW</td>
</tr>
</tbody>
</table>

CAPACITANCE (Periodically sampled rather than 100% tested)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance ($f = 1.0$ MHz)</td>
<td>$C_{in}$</td>
<td>–</td>
<td>4.0</td>
<td>7.0</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance ($f = 1.0$ MHz)</td>
<td>$C_{out}$</td>
<td>–</td>
<td>4.0</td>
<td>7.0</td>
<td>pF</td>
</tr>
</tbody>
</table>

AC CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

[All timing with $t_{r}, t_{f} = 20$ ns; Load = 1 TTL Gate (MC7400 Series), $C_{L} = 30$ pF]

TIMING (Typical values measured at 25°C and nominal supplies)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Access Time (See Figure 1A)</td>
<td>$t_{acc}(A)$</td>
<td>350</td>
<td>500</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Row Select Access Time (See Figure 1B)</td>
<td>$t_{acc}(RSI)$</td>
<td>300</td>
<td>500</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1 – TIMING DIAGRAMS

A. ADDRESS ACCESS TIMING DIAGRAM

B. ROW SELECT ACCESS TIMING DIAGRAM

Note: Address inputs are set in a dc state.
MEMORY OPERATION (Using Positive Logic)
Most positive level = 1, most negative level = 0

Address
To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 thru A6).

Row Select
To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RS1 thru RS4).

Shifted Characters
These devices have the capability of displaying characters that descend below the bottom line (such as lower case letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character can be programmed to occupy either of the two positions in a 7 x 16 matrix. (Shifted characters are not available on MCM6572 or MCM6573.)

Output
For these devices, an output dot is defined as a logic "1" level, and an output blank is defined as a logic "0" level.

DISPLAY FORMAT

Figure 8 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM6570 allows the user to locate the basic 7 x 9 font anywhere in the 7 x 16 array. In addition, a shifted font can be placed anywhere in the same 7 x 16 array. For example, the basic MCM6571 font is established in rows R14 thru R6. All other rows are automatically blanked. The shifted font is established in rows R11 thru R3, with all other rows blanked. Thus, while any one character is contained in a 7 x 9 array, the MCM6571 requires a 7 x 12 array on the CRT screen to contain both normal and descending characters. Other uses of the shift option may require as much as the full 7 x 16 array, or as little as the basic 7 x 9 array (when no shifting occurs, as in the MCM6572).

The MCM6570 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM6571 from bottom to top, whereas an up counter will scan the MCM6571A from top to bottom (see Figures 14 and 15 for row designation).

---

**FIGURE 8 – ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM6571 AND MCM6572**

<table>
<thead>
<tr>
<th>RS3</th>
<th>RS2</th>
<th>RS1</th>
<th>RS0</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>R2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>R4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>R5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>R6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>R7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>R10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>R12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>R13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>R14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>R15</td>
</tr>
</tbody>
</table>

---

**MOTOROLA Semiconductor Products Inc.**
CUSTOM PROGRAMMING FOR MCM6570

By the programming of a single photomask, the customer may specify the content of the MCM6570. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:

1. Hexadecimal coding using IBM Punch Cards (Figures 10 and 11).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 12).

Programming of the MCM6570 can be achieved by using the following sequence:

1. Create the 128 characters in a 7 x 9 font using the format shown in Figure 9. Note that information at output D6 appears in column one, D5 in column two, thru D0 information in column seven. The dots filled in and programmed as a logic “1” will appear at the outputs as VOH; the dots left blank will be at VOL. (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)

2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S).

3. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns S and D3. For the bottom eight rows, the bit in column S must be zero, so these locations have been omitted. For the top row, the bit in column S will be zero for an unshifted character, and one for a shifted character.

4. Transfer the hexadecimal figures either to punched cards (Figure 10) or to paper tape (Figure 12).

5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 thru 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.

6. Provide, in writing, the information indicated in Figure 13 (a copy of Figure 13 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

---

**FIGURE 9 – CHARACTER FORMAT**

<table>
<thead>
<tr>
<th>Character Number</th>
<th>MSB</th>
<th>LSB</th>
<th>HEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14</td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>R13</td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>R12</td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>R11</td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>R10</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>R9</td>
<td></td>
<td></td>
<td>4A</td>
</tr>
<tr>
<td>R8</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>R7</td>
<td></td>
<td></td>
<td>4A</td>
</tr>
<tr>
<td>R6</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>S D6 D4 D3 D0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.*

**FIGURE 10 – CARD PUNCH FORMAT**

<table>
<thead>
<tr>
<th>Columns</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10</td>
<td>Blank</td>
</tr>
<tr>
<td>11</td>
<td>Asterisk (*)</td>
</tr>
<tr>
<td>12 - 29</td>
<td>Hex coding for first character</td>
</tr>
<tr>
<td>30</td>
<td>Slash (/)</td>
</tr>
<tr>
<td>31 - 48</td>
<td>Hex coding for second character</td>
</tr>
<tr>
<td>49</td>
<td>Slash (/)</td>
</tr>
<tr>
<td>50 - 67</td>
<td>Hex coding for third character</td>
</tr>
<tr>
<td>68</td>
<td>Slash (/)</td>
</tr>
<tr>
<td>69 - 76</td>
<td>Blank</td>
</tr>
<tr>
<td>77 - 78</td>
<td>Card number (starting 01; thru 43)</td>
</tr>
<tr>
<td>79 - 80</td>
<td>Blank</td>
</tr>
</tbody>
</table>

Column 12 on the first card contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Column 13 contains D3 thru D0. Columns 14 and 15 contain the information for the next row. The entire first character is coded in columns 12 thru 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM6571 are correctly coded and punched in Figure 11.
FIGURE 11 — EXAMPLE OF CARD PUNCH FORMAT
(First 9 Characters of MCM6571)

<table>
<thead>
<tr>
<th>Column</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>0000000000</td>
<td>1111111111</td>
<td>2222222222</td>
<td>3333333333</td>
<td>4444444444</td>
<td>5555555555</td>
<td>6666666666</td>
<td>7777777777</td>
<td>8888888888</td>
</tr>
</tbody>
</table>

FIGURE 12 — PAPER TAPE FORMAT

<table>
<thead>
<tr>
<th>Frames</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td>Blank Tape</td>
</tr>
<tr>
<td>1 to M</td>
<td>Allowed for customer use (M ≤ 64)</td>
</tr>
<tr>
<td>M + 1, M + 2</td>
<td>CR; LF (Carriage Return; Line Feed)</td>
</tr>
<tr>
<td>M + 3 to M + 66</td>
<td>First line of pattern information (64 hex figures per line)</td>
</tr>
<tr>
<td>M + 67, M + 68</td>
<td>CR; LF</td>
</tr>
<tr>
<td>M + 69 to M + 2378</td>
<td>Remaining 35 lines of hex figures, each line followed by a Carriage Return and Line Feed</td>
</tr>
</tbody>
</table>

Blank Tape

Frames 1 to M are left to the customer for internal identification, where M ≤ 64. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.) Frame M + 3 contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame M + 4 contains D3 thru D0. Frames M + 5 and M + 6 program the second row of the first character. Frames M + 3 to M + 66 comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain 36 x 64 or 2304 hex figures. Since 18 hex figures are required to program each 7 x 9 character, the full 128 (2304 ÷ 18) characters are programmed.

FIGURE 13 — FORMAT FOR ORGANIZATIONAL DATA

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td></td>
</tr>
<tr>
<td>Customer Part No.</td>
<td></td>
</tr>
<tr>
<td>Row Number for top row of non-shifted font</td>
<td></td>
</tr>
<tr>
<td>Row Number for bottom row of non-shifted font</td>
<td></td>
</tr>
<tr>
<td>Row Number for top row of shifted font</td>
<td></td>
</tr>
</tbody>
</table>

MOTOROLA Semiconductor Products Inc.
**FIGURE 16 – MCM6572 PATTERN**

<table>
<thead>
<tr>
<th>16</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>A1</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>A6</td>
<td>A5</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

- Shifted characters are not used.

**FIGURE 17 – MCM6573 PATTERN**

<table>
<thead>
<tr>
<th>16</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>A1</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>A6</td>
<td>A5</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

- Shifted characters are not used.
FIGURE 22 – MCM6578 PATTERN

FIGURE 23 – MCM6579 PATTERN

MOTOROLA Semiconductor Products Inc.
APPLICATIONS INFORMATION

One important application for the MCM6570-79 is in CRT display systems (Figure 24). A set of buffer shift registers or random access memories applies a 7-bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked serially out to the Z-axis where it modulates the raster to form the character.

The MCM6570-79 require three power supplies: -3.0 volts, +5.0 volts, and +12 volts. The character generator requires only small currents from the -3.0 volt and +12 volt supplies, such that charge pump techniques using +5.0 volt supplies can be used.

Figure 25 shows a supply circuit that will generate the required -3.0 volts for \( V_{BB} \). The +12-volt supply of Figure 26 will supply the 6.0 mA that is typically required. Increased current capability is possible by modifying the circuits. Use of these small, low-cost supplies makes a single +5.0-volt system possible.

When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit spikes or “glitches” on their outputs when the ac power is switched on and off. For example, the bench power supply programmed to deliver +12 volts may have large transients below ground when the ac power is switched on and off. If this possibility exists, it is suggested that the user switch the dc side of the power supply or protect the device power pins (+12, +5.0, and -3.0 volt) against reverse biasing with clamp diodes. A hot carrier diode such as the MBD501 is suggested for this purpose.
FIGURE 25 - SUBSTRATE BIAS CHARGE PUMP SUPPLY

- 1/6 MC7404
- 1.0 k
- 100 pF
- D = Germanium diodes

FIGURE 26 - GATE VOLTAGE CHARGE PUMP SUPPLY

- +5.0 V
- 1.0 k
- 18 μH
- 12 V
- 1.0 μF

PACKAGE DIMENSIONS

CASE 684-04

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17.8</td>
<td>18.4</td>
</tr>
<tr>
<td>B</td>
<td>12.70</td>
<td>13.12</td>
</tr>
<tr>
<td>C</td>
<td>3.00</td>
<td>3.05</td>
</tr>
<tr>
<td>D</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>F</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>G</td>
<td>2.54</td>
<td>2.65</td>
</tr>
<tr>
<td>H</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>J</td>
<td>0.70</td>
<td>0.85</td>
</tr>
<tr>
<td>K</td>
<td>2.92</td>
<td>3.05</td>
</tr>
<tr>
<td>L</td>
<td>14.86</td>
<td>15.87</td>
</tr>
<tr>
<td>M</td>
<td>1.50</td>
<td>1.58</td>
</tr>
<tr>
<td>N</td>
<td>0.91</td>
<td>1.14</td>
</tr>
</tbody>
</table>

CASE 709-01

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.30</td>
</tr>
<tr>
<td>B</td>
<td>1.22</td>
</tr>
<tr>
<td>C</td>
<td>0.50</td>
</tr>
<tr>
<td>D</td>
<td>0.75</td>
</tr>
<tr>
<td>F</td>
<td>0.35</td>
</tr>
<tr>
<td>G</td>
<td>0.20</td>
</tr>
<tr>
<td>H</td>
<td>0.75</td>
</tr>
<tr>
<td>J</td>
<td>0.50</td>
</tr>
<tr>
<td>K</td>
<td>0.10</td>
</tr>
<tr>
<td>L</td>
<td>1.44</td>
</tr>
<tr>
<td>M</td>
<td>0.07</td>
</tr>
<tr>
<td>N</td>
<td>0.03</td>
</tr>
</tbody>
</table>

NOTES:
1. LEADS WITHIN 0.13 mm (0.005 in) OF TRUE POSITION AT SEATING PLANE WITH MAXIMUM MATERIAL CONDITION.
2. LEAD NO. 1 CUT FOR IDENTIFICATION OR BUMP ON TOP.
3. DIM "L" TO INSIDE OF LEADS (MEASURED 0.51 mm (0.020 in) BELOW PKG BASE)

NOTES:
1. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010 in) AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (DIM. "D")
2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc., or others.
The formats below are given for your convenience in preparing character information for MCM6570 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

MSB  |  LSB  |  HEX  
---|---|---
R   |   |   
R   |   |   
R   |   |   
R   |   |   
R   |   |   
S   | D6 | D4 D3 | D0

MSB  |  LSB  |  HEX  
---|---|---
R   |   |   
R   |   |   
R   |   |   
R   |   |   
R   |   |   
S   | D6 | D4 D3 | D0

MSB  |  LSB  |  HEX  
---|---|---
R   |   |   
R   |   |   
R   |   |   
R   |   |   
R   |   |   
S   | D6 | D4 D3 | D0

MSB  |  LSB  |  HEX  
---|---|---
R   |   |   
R   |   |   
R   |   |   
R   |   |   
R   |   |   
S   | D6 | D4 D3 | D0

MSB  |  LSB  |  HEX  
---|---|---
R   |   |   
R   |   |   
R   |   |   
R   |   |   
R   |   |   
S   | D6 | D4 D3 | D0

MSB  |  LSB  |  HEX  
---|---|---
R   |   |   
R   |   |   
R   |   |   
R   |   |   
R   |   |   
S   | D6 | D4 D3 | D0