the digital group

po box 6528 denver, colorado 80206 (303) 777-7133

THE DIGITAL GROUP CASSETTE STORAGE SYSTEM

TABLE OF CONTENTS

	Pa	age
I.	INTRODUCTION	. 1
II.	SOFTWARE INTERFACE Commands Status Input Output Mechanical Considerations	. 1 . 1 . 2 . 2 . 2 . 3
	HARDWARE INTERFACE	. 4
	THEORY OF OPERATIONS Head Electronics Bit Synchronizing Electronics Group Coded Recording Recording Format Data Flow Control Sequencer Data Status Logic Clocks and System Timing Motor Drive and Sense Electronics Motor Control Electronics	6 6 . 10 . 10 . 11 . 11 . 12 . 13
	CONSTRUCTION	. 10
VI.	CALIBRATION Oscillator Calibration Motor Speed Calibration Read Amplifier Gain Calibration Head Azimuth Adjustment	. 16 . 17
	DEBUG	. 18
VIII	APPENDIX Parts List PROM Pattern Connector Pinout Transistor Orientation Driver Software Description Recording Format Program Tapes and Listings Phideck Maintenance Phideck Exploded View Phideck Parts Matrix Phideck Wiring Pnideck Connection Standards Component Placement Schematic	. 20 . 21 . 22 . 23 . 24 . 26 . 27 . 38 . 40 . 41

List of Figures

Figu	re	⊃age
3.1	Dedicated I/O Ports	4
3.2	Multiplexed I/O Ports with Dedicated Strobes	5
3.3	Bus Oriented Ports	5
4.1	Head Electronics Waveforms During a Write Operation	7
4.1	Head Electronics Waveforms During a Read Operation	7
	Bit Synchronizer Timing	8
4.3		9
4.4	Hecording Methods	10
4.6	Recording Format	11
4.8	4-Phase Clocks	10
4.9	System Clock Signals	. 12
4.10	Motor Control State Diagram	. 14
7.1	Single-Step Clock	18
7.2	Digital to Audio Sensor	18
Lis	t of Tables	
Tab		Page
2.1	Status and Command Ports	2
2.2	Deck Selection	2
4.5	4-to-5 Bit Translation Table	٠ و
4.7	Valid Sequencer States	11

I. INTRODUCTION

The Digital Group Cassette Storage System is a total magnetic tape data storage and retrieval system capable of controlling up to four Phideck cassette transports and accessing any of over one million 8-bit bytes within 20 seconds, using standard C-30 Phillips cassettes.

The system is ideal for general purpose data and program storage, file copying, editing, and sorting operations. Each deck is fully controlled to prevent tape breakage. Electronic braking precisely controls tapes for fast forward and rewind operations. A 4- to 5-bit translation scheme, called Group Coded Recording, allows higher packing densities with a soft error rate of less than one bit in 10⁸. This system operates at 1600 flux changes per inch, yielding a data transfer rate of 800 bytes per second at a tape speed of five inches per second.

SPECIFICATIONS

Recording Density: 1600 FCPI (Flux Changes Per Inch)

Data Density: 1280 BPI (Bits Per Inch)

using 4- to 5-bit Group Coded Recording

Data Rate: 800 Bytes per second (6400 Baud)

Data Capacity: 250,000 bytes on each side of a C-30 audio cassette

540,000 bytes on each side of 300 foot data cassette

Tape Speed: 5 IPS Read/Write

100 IPS Fast Forward/Reverse

Speed Tolerance: ± 15% (i.e., the system will read a tape that was recorded 15% from the nominal speed without

adjustment. It will read tapes outside this range by adjusting the data rate control.)

Error Rate: Soft - less than 1 bit in 108

Hard - virtually zero when using the software package supplied with the system and a good quality

audio tape

Power: $+5V DC \pm 5\%$

1.0 Amps nominal 1 drive 2.0 Amps maximum 4 drives

4.0 Amps peak for .1 second during drive enable

+12V DC unregulated (limits: 11V-20V) 0.4 Amp average with tape moving

0.7 Amp peak during motor start

II. SOFTWARE INTERFACE

Since the absolute method of controlling the cassette system will differ for each installation, only a basic interface will be described. The user can then modify the basic interface to meet his own requirements.

COMMANDS

The command port (see Table 2.1) interprets the various commands into tape motion and activates the read/write electronics. The two select bits, SEL1 and SEL2, select the active deck, according to Table 2.2. The selected deck can only be changed when all decks are stopped (status bit NOT BUSY is on). Otherwise, even though a command may specify a different deck, the original deck will be used. ENABLE/DISABLE (Enable=1, Disable=0) controls the deck capstan motors so that they may be turned off under software control. The capstan motors should be enabled during and at least one second prior to any other commands. STOP/RUN (Stop=1, Run=0) controls tape motion. The STOP command also takes up slack in the tape. FWD/REV (Fwd=1, Rev=0) controls tape direction, and SLOW/FAST (Slow=1, Fast=0) controls tape speed. Note that since "slow reverse" cannot be performed, a "slow forward" is automatically substituted. RCD/READ (Record=1, Read=0) controls the Read/Write electronics, and ERASE (=1) will erase the tape when RCD is selected. All commands other than the RECORD or ERASE commands should have RCD/READ=0 to prevent recording spurious glitches on the tape.

STATUS AND COMMAND PORTS

COMMAND PORT STATUS PORT

Bit	Definition (1 activ	re)	Bit	Definition (1 active)		
Ø	SEL 1		Ø	OVERRUN/UNDERRUN		
1	SEL 2		1	READY (data ready or ready		
2	1=ERASE			for data)		
3	1=RECORD	Ø=READ	2	STOP (possible jam or end		
4	1=STOP	Ø=RUN		of tape)		
5	1=FORWARD	Ø=REVERSE	3	NOT BUSY (user may change		
6	1=SLOW	Ø=FAST		decks)		
7	1=ENABLE	Ø=DISABLE				

Table 2.2

DECK SELECTION

SEL 2	SEL 1	DECK
Ø	Ø	Ø
Ø	1	1
1	Ø	2
1	1	3

STATUS

The status port (see Table 2.1) provides information on the state of the controller. Four status bits are brought out, leaving four input bits for other uses. Two of the bits, STOP and NOT BUSY, supply information on the deck status. STOP is an immediate response to a stop command or a jam. NOT BUSY occurs about a second after STOP turns on, signifying the deck is totally stopped. STOP is used by the software in all cases, except to switch the selected deck, which can only occur in a not busy state. The other two bits are status bits for the read/write electronics. READY indicates that the deck can accept another data byte (in Record) or that a new data byte is in the DATA-OUT port (in Read). READY is reset about one millisecond after it is set. It is also reset by a command, data in, or data out strobe. OVERRUN/UNDERRUN indicates that the computer has not serviced a READY by supplying or looking at the new character within the required time. It will remain set until a new command is issued. It is to be treated in most cases as an error condition.

INPUT DATA (FOR RECORD)

The data input port requests the data bytes which are to be recorded on the tape. The first byte should be loaded either prior to issuing the record command or within about five milliseconds after issuing the record command. Each subsequent byte of data to be recorded should be loaded when the READY status goes high. Loading the new byte will automatically reset the READY line. The byte should be loaded within .5 milliseconds after the READY signal. Otherwise, OVERRUN/UNDERRUN will come on, and the record electronics will go into erase mode. This may be allowed to happen at the end of a data block in order to record an inter-record gap. If a new command is to be given immediately after the last recorded byte, the OVERRUN/UNDERRUN bit must come on before the command is given. If the command is issued earlier, part of the last byte will not be recorded.

OUTPUT DATA (FOR READ)

The data output port is loaded by the read/write electronics with the data being read from the tape. After issuing a read command, the electronics will look for a sync pattern and then load the output port with the first data byte. At this time, READY will go high. When the byte is read, the READY signal will be reset. The byte should be read within .5 milliseconds after the READY signal. Otherwise, OVERRUN/UNDERRUN will come on, and the read electronics will be halted until another read command is issued.

MECHANICAL CONSIDERATIONS

Since the various tape and head movements require certain amounts of time to stabilize, consideration must be given by the software to insure error free read and record operations.

- 1. Never issue a record command (or turn on the record bit) when the tape is in any state other than slow forward, and the tape is stabilized against the head. The tape may take as much as one second to align itself with the tape guides on the head, and an unaligned tape may record errors. A good practice to insure reliable recording is to read the previous block without error. This implies the tape is tracking correctly for the record operation.
- When issuing a read command which causes the head to come up against the tape, noise and random patterns as the tape becomes aligned may cause false synchronizing and give erroneous read data. Therefore, it is good practice in this situation to wait about a second, and then reissue the read command, using only the data from this second read command.
- 3. When recording the first block of data at the start of a tape, issue an erase command, and then time out about five to seven seconds to allow the tape leader to pass before recording data.
- 4. To allow the recording of two consecutive blocks at different points in time, always go into erase mode after recording the first block for a time longer than the space between blocks. (This is easily done by ignoring the READY after the last byte has been recorded, and timing out for the erase time. The electronics will immediately begin erasing without glitching). When the block is to be recorded, it is begun somewhere within the erased section, thus preventing any glitching and subsequent false synchronizing on read operations.

The following bit patterns are recommended for issuing the various commands:

COMMAND	Bit:	7	6	5	4	3	2	1 Ø
STOP		1	1	1	1	Ø	Ø	Selected Deck
FAST FORWAR	D	1	Ø	1	Ø	Ø	0	(Note: Selected
FAST REVERSE	-	1	Ø	Ø	Ø	Ø	Ø	deck may only
READ		1	1	1	Ø	Ø	Ø	be changed
RECORD		1	1	1	Ø	1	Ø	when status bit
ERASE		1	1	1	Ø	1	1	NOT BUSY is on.)
STANDBY		Ø	1	1	1	Ø	Ø	

III. HARDWARE INTERFACE

Computer Interface

The basic interface of the cassette controller to the computer occurs through four controller I/O ports. These ports may be connected in various schemes to fully utilize the hardware arrangement of the computer.

The computer's output ports connect to the command port and the data-in port. The computer's input ports interface to the data-out port and the status port. Each port has its own strobe line which is used either to strobe information into the internal latch or to activate the tri-state output in order to read the port.

All outputs from the controller will support ten TTL loads, and all data or control inputs are one TTL load, the command strobe is two TTL loads, the data-in strobe is three TTL loads, the status strobe is four TTL loads, and data-out strobe is five TTL loads. The data-out and status ports are tri-state, activated by their respective strobes. All strobe signals are active low, and should remain high when not in use. The command data-in and the data-out strobes should be low for a period greater than 500nsec, but less than one millisecond. A strobe greater than one millisecond is likely to cause false status indication from the read/write electronics.

Some typical connections are shown in Figures 3.1 - 3.3. Figure 3.1 depicts a setup where all input and output ports are provided by the computer. Unless all strobes are obtainable from the computer, a third output port will have to be dedicated for software controlled strobe pulses. The scheme in Figure 3.2 uses this strobe port, but takes advantage of a bus system, since the strobes are no longer tied to specific ports but are under software control. Figure 3.3 uses a bus system found on more complex systems. Here, inputs and outputs are shared on the same line and controlled totally by the strobe signals. Care should be taken when using this method not to load the bus beyond its capacity.

Deck Interface

The cassette controller must also be interfaced to the decks. Refer to Figure 5.1 for the wiring of the decks. The board has four separate connections for each of four decks on all pins except ALLCAP, CAPSUPPLY, ALLENGSW, and ALLENGSWGND. The connectors supplied with the deck cables (when decks are included with the controller) will plug into connections for decks 0 and 1. When decks 2 and/or 3 are used, the above signals must be wired into the connector for deck 0 or 1. Also, HDGND is a common head ground, and all cable shields must be terminated at these two pins.

For users with a Digital Group system, refer to the section labeled *Using the Controller in a Digital Group System* following the construction section.

Figure 3.1 **DEDICATED I/O PORTS**

Figure 3.2

MULTIPLEXED I/O PORTS WITH DEDICATED STROBE (used with Digital Group systems)

IV. THEORY OF OPERATION

HEAD ELECTRONICS

The head electronics consists of IC27 and IC28 which drive the head during record and IC13 which amplifies the read signal during read. IC27 and IC28 (75125's) have tri-state outputs which normally are in the high impedance state during a read operation so that they won't influence the low level signal going from the head to the amplifier (IC13). During record, only the sections of IC27 and IC28 associated with the selected drive go into a low impedance state and drive the head in a push-pull manner. R6, R9, R20, and R23 are used to limit the current through the head and should be adjusted for a current of 1.5 times the head saturation current if the standard head is not used. Figure 4.1 shows typical waveforms for the record drivers.

During a read operation, section 1 of IC13 is used as a pre-amp with balanced inputs and a gain of 3.9. Section 2 is an amplifier with a gain of 22. Section 3 is a low-pass filter and differentiator which produces zero crossings at its output whenever the input signal has a peak. The low-pass filter reduces the differentiator's sensitivity to noise. Section 4 is a Schmitt trigger which detects the zero crossings and produces a TTL compatible signal at its output. Figure 4.2 shows typical waveforms for the read electronics.

BIT SYNCHRONIZING ELECTRONICS

This section of the controller is used to generate the proper fixed frequency clocks for record and variable frequency clocks synchronized to the data during read. The data is also converted from NRZI encoding to level encoding. This section of the electronics consists of IC9, IC37, IC50, IC41, IC42, IC55, IC10, IC11, T13, and associated logic and components.

IC9 oscillates at 14 times the bit rate (it takes ten of these bits for every eight bit data byte that is recorded) and is adjusted using R28. During read, IC37 and its associated reset circuitry divides the OSC signal by 8 if the data is coming in slow, by 7 if the data is coming in on frequency, and by 6 if the data is coming in fast. The incoming data rate is checked every time there is a data bit of value "1". There is no correction for data bits of value "0". This compensates for small rapid variations in tape speed. Large speed variations generate a DC error voltage with IC10 and IC11 which is fed back to the control input of oscillator IC9. During record, IC37 divides OSC by 7 and T13 turns off the DC feedback loop.

GROUP CODED RECORDING

Since a flux density of 1,600 flux changes per inch was incorporated, a special effort was made to also increase bit density in a packing scheme which maintains self-synchronization. Figure 4.4 illustrates this convention, group-coded recording, in a comparsion with some older methods.

Figure 4.2 Head Electronics Waveforms During a Read Operation

Figure 4.3 Bit Synchronizer Timing

Note 2:

This pulse is eitner 2 or 4 OSC cycles if incoming data is fast or slow respectively and DATA is 1

NRZI, non-return-to-zero, illustrates a recording efficiency of 1.0, where recording efficiency is defined as the highest ratio of BPI (bits per inch) to FCPI for a given format. There is, at most, only one flux change per bit. Unfortunately, this is not a self-clocking scheme, and is therefore impractical for use on a cassette system which has inherent speed fluctuations.

PE, phase encoding, was designed to overcome such limitations by providing a flux change at the center of each bit period which would synchronize a clocking circuit. The direction of this flux change indicates whether the bit is a 1 or 0. The recording efficiency of this method, however, is only 0.5.

Figure 4.4 Recording Methods

GCR, group-coded recording, at first glance appears very similar to the efficient NRZI method, but with one important difference: No more than two zeros may appear in a row in the bit stream. This guarantees a clock pulse at least once every three bits which provides synchronization. Since a restriction of no more than two zeros in a row cannot be placed on data, a translation scheme is used to encode 4-bit groups into 5-bit groups, and the above restriction is then placed on the 5-bit groups. The translation table is shown in Table 4.5. Since the format is essentially NRZI, we have 4 bits per 5 flux changes, or a recording efficiency of 0.8, which is 60% better than PE.

Table 4.5
4- to 5-Bit Translation Table

4-Bi	t Da	ta Value		5-1	Bit	Red	orc	ding	Value
0 (0 0	0		1	1	0	0	1	
0 (0 (1		1	1	0	1	1	
0 (1	0		1	0	0	1	0	
0 0) 1	1		1	0	0	1	1	
0 1	0	0		1	1	1	0	1	
0 1	0	1		1	0	1	0	1	
0 1	1	0		1	0	1	1	0	
0 1	1	1		1	0	1	1	1	
1 (0 (0		1	1	0	1	0	
1 (0 (1		0	1	0	0	1	
1 () 1	0		0	1	0	1	0	
1 () 1	1		0	1	0	1	1	
1 1	0	0		1	1	1	1	0	
1 1	0	1		0	1	1	0	1	
1 1	1	0		0	1	1	1	0	
1 1	1	1		0	1	1	1	1	

RECORDING FORMAT

A synchronous format is automatically added by the electronics to the data being recorded. Of all the 5-bit patterns possible for use in this system, the only pattern not used is 11111. Therefore, this pattern is sent 15 times at the beginning of a data block (75 ones). The purpose of using this pattern is twofold. First, since the start of a block must be found by dropping the head anywhere on the tape, the electronics searches for about 20 ones in a row, and this pattern only occurs at the block start. Second, the ones form a steady clock frequency and allows the self-correcting clocking circuitry to achieve sync in the fastest possible time.

After the ones are recorded, the five bit sequence, 00101, is recorded as a sync character. This particular sequence uniquely defines the absolute start of the block. At this point, the 4 high bits of the first byte are translated to 5 bits and recorded, and then the 4 low bits are translated and recorded. The rest of the bytes are recorded in a similar manner. If a new block is not immediately started, an erase signal will begin after the last byte. Figure 4.6 depicts the format.

Figure 4.6 Recording Format

DATA FLOW

Read

Data is strobed into IC46 and IC47 with the data input strobe. IC31 and IC32 select the half-byte to be recorded as well as the sync address. IC29 is a ROM which then encodes the 4-bit code into the 5-bit code and sends it to the 5-bit shift register, IC's 30, 5, and 24. The data is then shifted into IC4 which provides the record signal.

Data from the read circuitry is clocked into the 5-bit shift register (IC's 30, 5, and 24). After each half-byte is loaded, data is routed through the selector (IC's 31 and 32) and into the ROM decoder (IC29). Here, the 5-bit code is decoded back into 4 bits and is loaded alternately into IC43 and IC44 to be strobed out.

CONTROL SEQUENCER

The flip-flops whose outputs are RECORD, RUN, B, and A control the sequence of events in the reading and recording processes. Refer to Table 4.7 for the valid sequencer states. The command strobe forces the "SEARCH FOR ONES" state immediately, and system clocks put the sequencer through the appropriate states when the strobe is removed.

For record mode, the sequencer will go to the "GENERATE ONES" state at the next CLOCK1 pulse. The system then waits for IC's 7 and 20 to count out 75 ones and produce the ONESDONE signal. During this time, the ONES signal forces IC29's chip enable to output all ones into the shift register. After the ones are recorded, "SEND SYNC" is entered which produces the SYNC-GEN signal to load a sync pattern into the shift register. Next, "RECORD A" is entered and selects the high bits of the data byte, loading them into the shift register. Finally, "RECORD B" loads and sends the low bits of the data byte. "RECORD A" and "RECORD B" are then alternately repeated until either the next command strobe, a tape stop or jam, or an underrun condition. The latter two events will force the sequencer to the "GAP" or erase state.

Table 4.7

Valid Sequencer States

		State		
	RECORD	RUN	В	Α
Function				
GAP	1	Ø	Ø	1
GENERATES ONES	1	1	Ø	1
RECORD A	1	1	1	1
RECORD B	1	1	1	0
SEND SYNC	1	1	Ø	Ø
SEARCH FOR ONES	Ø	Ø	Ø	1
SEARCH FOR SYNC	Ø	1	Ø	1
READ A	Ø	1	1	1
READ B	Ø	1	1	Ø

For read mode, the sequencer remains in the "SEARCH FOR ONES" state until IC's 7 and 20 detect about 20 consecutive ones. If a zero occurs, IC7 is reset and the count begins again. When sufficient ones are found, ONEDET tells the sequencer to go to the "SEARCH FOR SYNC" state. Each read bit is then shifted into IC30 and all five bits in the shift register are selected and routed to the ROM. The SYNC signal occurs when the proper sync bit pattern is found. The "reset to 9" on IC20 is then released and the sequencer is synchronized to the data. Also, the "READ A" state becomes active, and the next five bits of data are shifted in, decoded, and loaded into IC43 as "READ B" is activated. The next five bits are operated on in the same way, except that IC44 is now loaded, and the sequencer goes back to state "READ A".

This sequence repeats until either a command strobe or an overrun occurs. In the second case, the "SEARCH FOR ONES" state is again forced until the next command strobe.

DATA STATUS LOGIC

READY and OVERRUN/UNDERRUN are controlled by IC21 and only occur at the times the shift register or the data output latches are being loaded. READY is set at the end of state "RECORD B" as the second half-byte of data is loaded into the shift register. It must then be serviced by the time "RECORD A" is entered, since the new first half-byte of data is needed at that point. If READY is not reset at this point (by the input data strobe), OVERRUN/UNDERRUN will latch on.

In read mode, READY is set at the end of state "READ B". It is at this time that the second half-byte of data is loaded into IC44. If the output data byte is not read before the next half-byte is loaded, the OVERRUN/UNDERRUN flag is latched on.

CLOCKS AND SYSTEM TIMING

There are four major clocking signals derived from a four-phase clock system. MCLK, the master clock, with DCLK, the data clock, generate ECLK, as in Figure 4.8.

IC20 is used to divide DCLK by 5 and get a signal, DIVIDE-BY-5, once every data half-byte. This is combined with other clock phases and sequencer states to obtain the clocks and signals shown in Figure 4.9.

Figure 4.8 4-Phase Clocks

MOTOR DRIVE AND SENSE ELECTRONICS

The purpose of this section of the controls is to provide drive to the motors, braking for the motors, deck selection, and sense tape motion for feedback to the motor control electronics.

TAKUPDRV goes to the low state whenever the takeup reel should be driven during read or record. R46 limits the motor torque during this operation. BOTHDRV goes low whenever the motor control electronics senses that the reels should have braking torque applied or that there may be slack in the cartridge. R45 limits the torque during this operation. ALCAP is used to turn on the capstan drive motor.

ENGAJDRV goes to the low state whenever the motor control electronics senses that the head and pinch roller should be moved toward or away from the tape. T7, T8, T9, and T10 are used to brake the engage motor whenever it is not being driven FFDRV and FRDRV are used to drive the tape in the fast forward or fast reverse direction whenever those commands are given.

Transistors T2, T3, T4, and T5 in conjunction with steering diodes D1-D11 and D15 are used to provide drive to the selected deck. Diodes D12, D13, and D14 apply drag to the undriven reel during the fast forward and reverse operations to prevent excessive tape speed and to slow the tape as it nears the end of the reel. Transistors T11 and T12 generate a signal called SPIN which tells the motor control electronics that the undriven reel is turning during the fast forward and reverse operations. The PULSE signal has small negative going pulses on it whenever the takeup reel is turning. This is used to detect tape jams and end of tape during the read, record, or erase operations.

MOTOR CONTROL ELECTRONICS

The motor control electronics senses the status of the tape motion, the position of the headbar, and the commands given by the user and sends control signals to the motor drive circuits. The status bits STOP and NOT BUSY are also generated and sent to the user interface.

The following discussion provides the user with a description of the primary control signals. The user should look at the state diagram given in Figure 4.10 to determine how the deck is actually controlled.

PULSES is generated by a one-shot (IC23) that goes active whenever a command is given and the deck is in the stopped state. PULSES stays active as long as a pulse is received on the PULSE line at least once every half second. If a pulse is not received within the allowed time, PULSES will go to a 1 and cause the deck to go toward the NOT BUSY state. The DELAY signal is also generated by a one-shot (IC23) and is used to inhibit tape motion sensing for ½ second after a command is given to allow for the tape to accelerate to the proper speed. This one-shot is also used to time the BOTH signal after a STOP command or tape iam is detected.

QUIT will go to the 1 level if the manual stop button is pressed, if a STOP command is given, if no pulses are detected and there is an active SLOW command, or if SPIN goes low during any FAST command and DELAY is not active. QUIT is equivalent to STOP on the user interface.

Note: Names within circles are motor control signals. Labels on lines indicate commands given by user or events within controller.

Figure 4.10 Motor Control State Diagram

V. CONSTRUCTION

Tools: Fine tipped, low wattage soldering iron, "wire solder" (around 20 gauge resin solder), small

diagonal cutters, needle-nose pliers.

Test Equipment: Voltmeter

500KHz or better oscilloscope

Frequency counter Microprocessor, Mini, etc.

Estimated Construction Time:

6-11 hours

1. Using the component placement chart given in the appendix, insert the 12 16-pin sockets into the PC board. If the sockets have an indicator for pin one, orient it away from the edge connector. Invert the board by placing a book on the sockets to hold them in and **carefully** solder all pins.

- 2. Insert and solder the 36 14-pin sockets as described above.
- 3. Insert and solder the 6 8-pin sockets.
- 4. The controller and deck need +5 Volts at 1 Amp nominal and +12 Volts at 0.7 Amps peak. Insert IC12, using silicone grease and the heat sink. Solder R57 and R58.
- 5. Apply power to the board and check voltages at the traces labeled 9V and 5V. The 9 Volt supply should be between 8.4 and 9.6 Volts. The 5 Volts should be between 4.75 and 5.25.
- 6. Remove power from the board
- 7. Insert and solder the three resistors rated above ¼ watt (R44, R45, and R46).
- 8. Insert and solder the data-rate potentiometer (R28). Orient it so that it may be adjusted from the top of the board.
- 9. Insert and solder the remaining resistors.
- 10. Insert and solder all polarized capacitors (C2, C13-C19, C22, C27, C30, C32, C33). C13 and C14 are marked with a + or -. The others have a solid section of color on the positive lead. The board has + notations to aid in orientation.
- 11. Insert and solder the various remaining capacitors.
- 12. Insert and solder the four 1N4148 diodes and the 15 1N4001 diodes. All diodes should be oriented so that the bands on the diode are toward the right side of the board. There is also a diode symbol in the board to aid in orientation.
- 13. Insert and solder T6-T12 into place. The emitter lead for these transistors is marked with a dot on one of the transistor pads. The appendix contains a pictorial to aid in orienting the various transistors supplied in your kit.
- 14. Insert and solder the FET (T13). Orient it so that the drain is toward the top of the board (opposite from the connector).
- 15. Insert and solder T1-T5. These transistors are placed vertically with the leads inserted fully through the circuit board.
 Note that the emitter lead is marked with an E on the circuit board.
- 16. Insert all IC's into their respective sockets, observing correct orientation (pin 1 away from edge connectors). If a standard Digital Group CPU cabinet and the Phideck cabinet are being used, omit steps 17-19 and refer to Appendix L.
- 17. Wire the board into the microprocessor's I/O structure, as described below. Connect the Phideck by slipping the Molex connector supplied with the deck onto pins H R of the controller's 36-pin socket. Orient the Molex connectors such that the orange wire is on pin R. This puts the deck into position 0.
- 18. If deck 1 will also be used, connect its Molex connector similarly to the connector for deck Ø. Bend the pins out on the 36-pin socket and slip on the connector. Decks 2 and 3 must be rewired at the connector, since several of the necessary signal pins are common to all of the decks.
- 19. Connect the shielded pair from deck 0 to pins 1 and A. Connect the ground to pin 5 or E. If deck 1 is to be used, connect the shielded pair to pins 2 and B (reserve the connector's orientation) and rewire the ground pin into deck 0's ground connector. For decks 2 and 3, a different method of connection must be employed, as no more Molex connectors will fit.
- 20. Remove the protective plastic shield from the digital head on the transport, if one has been supplied.

- 21. Proceed with the initial checkout of the board by following the steps under Section VII. DEBUG
- 22. When the board seems to be working properly, perform the oscillator calibration and read amplifier gain calibration procedures under Section VI, CALIBRATION. Calibrate the motor speed only if it is absolutely necessary. The Cassette Storage System is now ready for use.

USING THE CONTROLLER IN A DIGITAL GROUP SYSTEM

The connection diagram in Figure 3.2 of the controller manual is used with the Digital Group Software packages. Refer to the wiring chart in Table 6.1 and to Appendix L, Phideck Connection Standards, for the proper connections to implement the wiring scheme in Figures 3.2. Appendix L covers cabling using a Digital Group CPU cabinet, Phideck cabinet and Phideck Interconnect cable. If the Phideck cabinet and Interconnect cable are not being used, make the connections in Table 6.1 and Detail 1 of Appendix L and follow the Deck Interface section for deck connections.

An optional, but highly recommended, stop switch may be wired to the controller. A normally open momentary push button which brings the manual stop pin (\overline{B}) to ground will stop all deck movement.

VI. CALIBRATION

OSCILLATOR CALIBRATION

To insure compatibility between decks and tapes among all users of this system, the data rate should be adjusted to meet the standard specifications. Before you proceed with the adjustment of R28, the controller must be placed in the record mode by issuing a record command from the computer. This disables the DC feedback path to pin 5 of IC9. Adjust R28 for a 112 KHz signal at pin 3 of IC9. In record mode, this will produce an 8 KHz signal on DCLK. This bit rate (8,000 bits/sec) will record 1,600 flux changes per inch at a tape speed of five inches per second. The data rate is then 6,400 baud when referenced to the data transfer rate between the computer and the controller.

MOTOR SPEED CALIBRATION

The capstan motor on the Phideck is preadjusted to 5 ips at the factory. The following adjustment may be made periodically to keep the deck speed within tolerance. (Note: Side B of your tape has approximately one minute of a 4 KHz test signal recorded on it. This is equivalent to 1,600 FCPI.) Using the 4 KHz test signal recorded on the reverse side of the cassette supplied with your controller, monitor the tape signal in the read mode on IC13, pin 14. With a non-metallic screwdiver or alignment tool, adjust the tape speed through the hole on top of the capstan motor so that the frequency of the tape signal is 4 KHz.

Wiring Chart

Phideck Board PIN #	DESCRIPTION	CONNECT TO	I/O Board (Ports PIN #	DESCRIPTION
6	DO7		26	MSB
7	DO6		25	MSB-1
8	DO5 Data		24	MSB-2 Input
9	DO4 Output		23	MSB-3 Port 2
10	DO3 Lines		22	LSB+3
11	DO2		21	LSB+2
12	DO1		20	LSB+1
13	DOØ .		19	LSB
14	Data Output Strobe		RIDICIB K	MSB-3, Output Port 1
15	D17		<u>D</u>	MSB
16	D16		<u>C</u>	MSB-1 Output
17	D15		B	MSB-2 Port 2
18	D14 Data			MSB-3
19	D13 Input		Z	LSB+3
20	D12 Lines		Υ	LSB+2
21	D11		Χ	LSB+1
22	D1Ø		W	LSB
23	Data Input Strobe		U	MSB, Output Port 1
L	*Not Busy		22	LSB+3
M	*Stop Status		21	LSB+2 Input
N	*Ready Port		20	LSB+1 Port 2
Р	*Overrun/Underrun		19	LSB
R	Status Strobe		<u>s</u>	MSB-2, Output Port 1
S	*Enable/Disable		₫	MSB
Т	*Slow/Fast		<u>C</u>	MSB-1
U	*FWD/BKWD Comr	nand	SIDICIBIA	MSB-2 Output
V	*Stop/Run Port		Α	MSB-3 Port 2
W	*RCD/READ		Z	LSB+3
Χ	*ERASE		Υ	LSB+2
Υ	*SEL2		X	LSB+1
$\frac{Z}{A}$	*SEL2		W	LSB
Ā	Command Strobe		Т	MSB-1, Output Port 1
B	Manstop	.	Stop	
	4			
		Momentary, No	ermally Open Switch	ch

*These pins may actually be wired to the opposite pin on the Phideck Board connector (i.e., pin L to pin 10 on the Phideck Board).

READ AMPLIFIER GAIN CALIBRATION

First, record several minutes of test data onto a tape that you will be using. The Demo program on the Audio cassette supplied with the controller contains a routine for recording test data. (Once you have decided on a type of tape that gives you good results and that is readily available, you should not change tapes.) Now place the controller in read mode and read your tape. Monitor the signal at IC13, pin 1. If the amplitude is not within the limit shown in Figure 4.2, try different values of R18 until the amplitude is within limits. This adjustment is not critical and your controller will give good results even if your amplitude is not within the limits specified.

HEAD AZIMUTH ADJUSTMENT

Using the 4 KHz test signal recorded on the reverse side of the cassette supplied with your controller, monitor the tape signal on IC13, pin 1 with an oscilloscope. Adjust the Azimuth adjusting screw for maximum output. The azimuth adjusting screw is located on the left side of the head with a spring under it to maintain tension. After adjusting, seal the screw in place with insulating varnish or fingernail polish.

-17-

VII. DEBUG

Reread the software section to be certain the correct procedures are being executed. Insert controller card (do not connect Phideck yet) and turn power on. The Demo program on the Audio cassette supplied with the controller should be used to check out the basic functions of the controller. This will allow you to issue the basic motor commands and record a repetitive test data pattern. Do not use the test data options to test motor control functions. These are intended to check the read/record circuitry.

Issue input and output commands to the I/O ports and verify that the strobe signals are present when the command is issued. Also, verify that the data is being latched in the command and data latches correctly (IC33, 46, 47, and 28).

CONNECT THE PHIDECK AND PROCEED THROUGH THE FOLLOWING SECTIONS.

MOTOR CONTROL ELECTRONICS

Place an old cassette into the deck (if the motor control electronics is not working properly this test may destroy the tape). Issue a fast forward command and check tape movement (these commands are given in the Mechanical Considerations portion of this manual). Issue a fast reverse command and check tape movement. Remove cassette and issue a stop command. Both reel motors should turn in opposite directions. Reinsert the cassette and issue a record command. The head should engage the tape and the takeup reel should turn. Place your finger on the takeup reel motor pulley. The head should disengage within 1.5 seconds after stopping the motor. If any of the above tests fail, refer to the Theory of Operation for the motor drive and sense electronics and the motor control electronics and proceed to trace the problem.

HEAD SENSE AND BIT SYNCHRONIZING ELECTRONICS

Place controller in record mode and output data bytes to the controller every time READY comes true. You should see waveforms similar to those shown in Figure 4.1 at the outputs of the selected head driver (IC27 or IC28). Waveforms similar to these should also appear on the head of the selected drive.

The read amplifiers may be tested by using the tape you made in the previous paragraph, placing the deck in read mode after rewinding the tape, and looking for the waveforms given in Figure 4.2. If the voltage at IC13, pin 1 is clipping or not within the range shown, refer to Calibration for Adjustment. This adjustment is not critical and is probably not the cause of the controller malfunction.

The bit synchronizing electronics may be checked by verifying the timing diagram shown in Figure 4.3.

READ/WRITE ELECTRONICS

Test all of the clocking signals depicted in Figure 4.9. If a signal is not present or correct, trace back through the logic generating that signal. Make sure about 0.2 Volts of the tape head signal is present on record, and not on read. Check that RECORD reflects the selected state and RDY had a pulsing signal when recording or reading.

The basic clock, IC9, may be removed, and a bounceless switch (Figure 7.1) used to single step the system (14 clocks per data bit). If an oscilloscope is not available, an audio amplifier with the circuit in Figure 7.2 can be used to probe for clocks and data flow. For example, recording or reading in hex "5A" will sound like a 4 KHz square wave on pin 6 of IC5, and (on record) a 2 KHz square wave on pin 3 of IC4. (This signal is not present on erase and read.)

Figure 7.1 Single-step Clock

Figure 7.2 Digital to Audio Sensor

VIII. APPENDIX

- A. Parts List
- B. PROM Pattern
- C. Connector Pinout
- D. Transistor Orientation
- E. Driver Software Description
- F. Recording Format
- G. Program Tape and Listings
- H. Phideck Maintenance
- I. Phideck Wiring
- J. Phideck Connection Standards
- K. Component Placement
- L. Schematic

A. PARTS LIST

1	DESCRIPTION	QUANTITY	CIRCUIT REFERENCE
FAUDO 8			
1			
1			
1			
7410			
1			
1420			
1451			
1			
TATA			
7475 7486 7486 1			
TABB			
7490 7493 7493 7493 2			
7493 74107 74107 74107 74128 1 1 1C24 74125 3 1C27, 28, 45 74153 2 1G31, 32 74155 1 1 1C35 74173, 8551 2 1 1C35 74173, 8551 1 1C30 74188, 8223, 6330-1J 745188, 8223, 6330-1J 1 1C31 1LM365 1 1C11 1LM555 1 1C9 2M403 4 77, 8, 9, 10 2M5129 2M5129 1 T12 2N5129 1 T12 2N5139 2 T6, 11 2N6109 4 T2, 3, 4, 5 2N6410, MJE2050 1 T1 MPF971 1 T13 1.5 ohm, WW 1 R46 18 ohm, 2W 1 R46 18 Ohm 1 R46 80 ohm 1 R48 80 ohm 1 R50 80 ohm 1 R49 81, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 2K ohm 2 R4, 50 8K ohm 2 R4, 50 8K ohm 3 R40, 41, 42 3K ohm 1 R50 3K ohm 1 R13 150K ohm 1 R13 150K ohm 1 R18 150K ohm 1 R18			
74107 74123 74123 1			
74123			
74125 3 IC27, 28, 45 74133 2 IC31, 32 74173, 8551 2 IC43, 44 74195 1 IC30 745188, 8223, 6330-1J 1 IC29 75451 4 IC51, 52, 53, 54 LM324 1 IC13 LM3658 1 IC12 LM3586 1 IC11 LM555 1 IC9 2N4403 4 T7, 8, 9, 10 2N5139 2 T6, 11 2N6109 4 T2, 3, 4, 5 2N6109 4 T2, 3, 4, 5 2N610, MJE2050 1 T1 MPF971 1 R44 7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R46 40 ohm 1 R47 47 ohm 2 R53, 57 82 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R48 510 ohm			
74153 74153 74173, 8551 74195 1 1 1C30 743188, 8223, 6330-1J 75451 1 1C30 745188, 8223, 6330-1J 75451 1 1C30 75451 1 1C30 75451 1 1C31 1LM3024 1 1 1C13 1LM3407-8.0, uA7808 1 1 1C11 1LM3407-8.0, uA7808 1 1 1C12 1M358 1 1 1C11 1LM358 1 1 1C11 1LM359 1 1 1C2 2N4103 2N4403 4 77, 8, 9, 10 2N4403 2N5139 2 76, 11 2N5139 2 76, 11 2N5139 2 76, 11 2N5139 1 712 2N5139 1 712 2N5139 1 713 1 713 1.5 ohm, ½W 1 7, 8, 9, 10 2N6410, MJE2050 1 71 1 713 1.5 ohm, ½W 1 1 844 18 ohm, 2W 1 1 846 18 ohm, 2W 1 1 846 18 ohm, 2W 1 1 845 50 ohm 1 R27 220 ohm 1 R27 220 ohm 1 R32 220 ohm 1 R32 240 ohm 1 R48 510 ohm 2 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 2 R1, 24, 49 1K ohm 2 R2, 49 1K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 1 R33K ohm 1 R33 33K ohm 1 R30 33K ohm 1 R30 34K ohm 1 R31 150K ohm 1 R13 150K ohm 1 R18 1Meg ohm 1 R90			
74155 74173. 8551 74173. 8551 74173. 8551 74196 1			
74173, 8551 2 IC43, 44 74196 1 IC30 74S188, 8223, 6330-1J 1 IC29 75451 4 IC51, 52, 53, 54 LM324 1 IC13 LM3407-8.0, uA7808 1 IC12 LM358 1 IC11 LM555 1 IC9 2N4403 4 T7, 8, 9, 10 2N5129 1 T12 2N5139 2 T6, 11 2N6109 4 T2, 3, 4, 5 2N6410, MJE2050 1 T1 MPF971 1 T13 1.5 ohm, WW 1 R44 7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R48 510 ohm 1 R58 680 ohm	74153		
74195	74155		
74S188, 8223, 6330-1J 75451 4 1C29 75451 4 1C51, 52, 53, 54 LM324 1 1C13 LM340T-8.0, uA7808 1 1C11 LM555 1 1C9 2N4403 4 77, 8, 9, 10 2N5129 1 2N5139 2 76, 11 2N6109 4 72, 3, 4, 5 2N6410, MJE2050 1 71 1 15, 5 ohm, ½W 1 75, 5 ohm, 1W 1 18 ohm, 2W 1 18 ohm, 2W 1 18 ohm, 2W 1 18 ohm 2 2 853, 57 82 ohm 1 82 ohm 1 82 R55, 57 82 ohm 1 83 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 86, 9, 20, 23, 26, 31, 55 12K ohm 2 12K ohm 2 13R 1, 29 4, 7K ohm 2 1 R28 4, 7K ohm 2 1 R28 4, 7K ohm 3 1 R28 4, 7K ohm 1 R28 4, 7K ohm 1 R28 4, 7K ohm 2 R1, 29 4, 7K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 1 R50 39K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R50 39K ohm 1 R50 39K ohm 1 R13 150K ohm 1 R13 150K ohm 1 R50 39K ohm 1 R13 150K ohm 1 R166	74173, 8551	2	IC43, 44
75451	74195	1	IC30
LM324 LM340T-8.0, uA7808 1	74S188, 8223, 6330-1J	1	IC29
LM340T-8.0, uA7808 LM358 LM358 1 IC11 LM555 1 IC19 2N4403 4 T7, 8, 9, 10 2N5129 1 T12 2N5139 2 T6, 11 2N6109 4 T2, 3, 4, 5 2N6410, MJE2050 MFF971 1 T13 1.5 ohm, ₩W 1 R44 7.5 ohm, 1W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R27 220 ohm 1 R27 220 ohm 1 R48 510 ohm 1 R48 510 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 2 R1, 29 4K ohm 1 R28 5K ohm POT 1 R28 5K ohm POT 1 R28 3K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R3 150K ohm 1 R13 150K ohm 1 R18 1 Meg ohm 1 R18 1 Meg ohm 1 R18	75451	4	IC51, 52, 53, 54
LM358 LM555 1	LM324	1	IC13
LM555 1 1 IC9 2N4403 4 77, 8, 9, 10 2N5129 1 712 2N5139 2 76, 11 2N6109 4 72, 3, 4, 5 2N6410, MJE2050 1 71 MPF971 1 1 713 1.5 ohm, ⅓W 1 R44 7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R84 680 ohm 1 R48 680 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 2 R1, 16, 19, 30 2.K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 5K ohm POT 1 R28 1 R50 39K ohm 1 R50 39K ohm 1 R50 39K ohm 1 R31 150K ohm 2 R4, 5 47K ohm 1 R31 150K ohm 2 R4, 5 47K ohm 1 R31 150K ohm 2 R4, 5 47K ohm 1 R31 150K ohm 2 R4, 5 47K ohm 1 R31 150K ohm 2 R51, 52 220K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R18	LM340T-8.0, uA7808	1	IC12
LM555 1 1 IC9 2N4403 4 T7, 8, 9, 10 2N5129 1 T12 2N5139 2 T6, 11 2N6109 4 T2, 3, 4, 5 2N6410, MJE2050 1 T1 1.5 ohm, ™ 1 R44 7.5 ohm, 1W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R48 510 ohm 1 R48 510 ohm 1 R48 510 ohm 1 R58 680 ohm 1 R58 680 ohm 2 R53, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 2 R1, 29 4.K ohm 2 R2, 49 5K ohm POT 1 R28 5K ohm POT 1 R28 3K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R30 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R4, 5 4K ohm 1 R50 39K ohm 2 R51, 52 20K ohm 1 R50 39K ohm 2 R51, 52 20K ohm 1 R50 39K ohm 2 R51, 52 20K ohm 1 R50 39K ohm 2 R51, 52 20K ohm 1 R50	LM358	1	IC11
2N4403		1	IC9
2N5129 2N5139 2			TT 0 0 40
2N5139			
2N6109 2N6410, MJE2050 MPF971 1 1 1.5 ohm, ½W 1.5 ohm, 1W 1.8 44 7.5 ohm, 1W 1.8 44 47 ohm 1.8 2 20 ohm 1.8 20 ohm 1.8 20 ohm 1.8 858 680 ohm 1.8 88 832, 33, 34, 35, 36, 37, 38, 39 1K ohm 1K ohm 1R 680 ohm 1R 7 86, 9, 20, 23, 26, 31, 55 1.2K ohm 1R 7 86, 9, 20, 23, 26, 31, 55 1.2K ohm 1R 82 2.2K ohm 1R 82 3K ohm 1R 82 3K ohm 3R 87, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3R 44, 41, 42 33K ohm 3R 600 ohm 3R 600 ohm 3R 7 86, 9, 20, 23, 26, 31, 55 1.2K ohm 2R 81, 29 4.7K ohm 2R 82, 49 5K ohm POT 3R 88 3R 89 3R 8			
2N6410, MJE2050 MPF971 1 T13 1.5 ohm, ½W 7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 1 R58 680 ohm 1 R69, 20, 23, 26, 31, 55 1.2K ohm 2 R1, 29 4.7K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 1 R28 10K ohm 1 R28 10K ohm 1 R28 10K ohm 1 R3 8 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 1 R50 39K ohm 1 R50 39K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R5, 56	2N5139		
MPF971 1 T13 1.5 ohm, ⅓W 7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 1 R58 680 ohm 1 R59 680 ohm 1 R59 680 ohm 1 R59 12 K ohm 2 R1, 29 4.7K ohm 2 R1, 29 4.7K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 33K ohm 1 R50 39K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R18	2N6109		
1.5 ohm, ⅓W 1 R44 7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 1 R58 680 ohm 1 R58 680 ohm 1 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 2 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 1 R28 5K ohm POT 1 R28 5K ohm POT 1 R28 5K ohm 1 R50 3SK ohm 1 R50 3SK ohm 1 R50 3SK ohm 1 R50 3SK ohm 1 R3 100K ohm 1 R13 150K ohm 2 R56	2N6410, MJE2050		
7.5 ohm, 1W 1	MPF971	1	T13
7.5 ohm, 1W 1 R46 18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 1 R58 680 ohm 7 R6, 9, 20, 23, 26, 31, 55 1, 2K ohm 4 R15, 16, 19, 30 2, 2K ohm 2 R1, 29 4, 7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 2K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56	1.5 ohm. ½W	1	R44
18 ohm, 2W 1 R45 47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 2K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56		1	R46
47 ohm 2 R53, 57 82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 2K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56		1	R45
82 ohm 1 R27 220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R18 1 Meg ohm 1 R56		2	R53, 57
220 ohm 1 R12 470 ohm 1 R48 510 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 3 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R3 100K ohm 1 R3 100K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R13 150K ohm 1 R13 150K ohm 1 R13 150K ohm 1 R13 150K ohm 1 R18			R27
470 ohm 1 R48 510 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1 2K ohm 4 R15, 16, 19, 30 2 2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
510 ohm 1 R58 680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
680 ohm 8 R32, 33, 34, 35, 36, 37, 38, 39 1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R18 1 Meg ohm 1 R56			
1K ohm 7 R6, 9, 20, 23, 26, 31, 55 1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
1.2K ohm 4 R15, 16, 19, 30 2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
2.2K ohm 2 R1, 29 4.7K ohm 2 R2, 49 5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
4.7K ohm2R2, 495K ohm POT1R2810K ohm13R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 5422K ohm3R40, 41, 4233K ohm1R5039K ohm2R4, 547K ohm1R3100K ohm1R13150K ohm2R51, 52220K ohm1R181 Meg ohm1R56			
5K ohm POT 1 R28 10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
10K ohm 13 R7, 8, 10, 11, 14, 17, 21, 22, 24, 25, 43, 47, 54 22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
22K ohm 3 R40, 41, 42 33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
33K ohm 1 R50 39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
39K ohm 2 R4, 5 47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			•
47K ohm 1 R3 100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
100K ohm 1 R13 150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
150K ohm 2 R51, 52 220K ohm 1 R18 1 Meg ohm 1 R56			
220K ohm 1 R18 1 Meg ohm 1 R56			
1 Meg ohm 1 R56			
	ı Meg onm	1 -20-	סטח

220 pfd mylar .0015 mfd mylar .0033 mfd mylar .005 mfd mylar .01 mfd disc .1 mfd disc 1 mfd tantalum 4.7 mfd tantalum 100 mfd electrolytic	1 1 1 1 14 2 9 2 2	C4 C12 C25 C3 C5, 6, 7, 8, 9, 10, 11, 20, 21, 23, 26, 28, 29, 31 C1, 24 C2, 15, 16, 17, 18, 19, 22, 30, 32 C27, 33 C13, 14 D1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1N4001 1N4148	4	D16, 17, 18, 19
TO-220 heatsink, THM6072B 4-40 screws 4-40 nuts #4 lockwashers 8-pin DIP sockets 14-pin DIP sockets 16-pin DIP sockets Dual 22-pin edge connectors Dual 36-pin edge connectors PC board	1 2 2 2 6 36 12 1 1	

B. PROM PATTERN

Α4	А3	A2	A1	Α0	В0	В1	B2	ВЗ	В4	B5	В6	B7
0	0	0	0	0	1	1	0	1	1	1	0	0
0	0	0	0	1	1	1	1	1	0	0	0	0
0	0	0	1	0	1	0	1	0	1	0	0	0
0	0	0	1	1	1	0	1	1	0	0	1	0
0	0	1	0	0	1	1	0	1	1	1	0	0
0	0	1	0	1	1	0	0	1	0	0	0	1
0	0	1	1	0	1	0	1	0	1	0	0	0
0	0	1	1	1	1	0	1	1	1	0	1	0
0	1	0	0	0	1	1	1	0	1	1	1	0
0	1	0	0	1	0	1	0	1	1	0	1	0
0	1	0	1	0	0	1	1	0	1	1	0	0
0	1	0	1	1	0	1	1	1	1	1	1	0
0	1	1	0	0	1	1	1	0	1	1	1	0
0	1	1	0	1	0	1	0	1	1	0	1	0
0	1	1	1	0	0	1	1	0	1	1	0	0
0	1	1	1	1	0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	0	0	0	1	1	0
1	0	()	0	1	0	0	0	0	0	1	0	0
1	0	0	1	0	0	0	0	0	0	1	0 1	0 0
1	0	0	1	1	0	0	0	0	0	1	1	0
1	0	1	0	0	0	0	0	0	0	1	1	0
1	0	1	0	1	0	0	0	0	0	0 1	0	0
1	0	1	1	0	0	0	0	0	0	1	1	0
1	0	1	1	1	0	0	0	0	0	0	1	0
1	1	0	0	0	0	0	0	0	0	0	Ó	0
1	1	0	0	1	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	0	0	1	0
1	1	0	1	1	0	0	0	0	0	1	Ö	0
1	1	1	0	0	0	0	0	0	0	Ö	0	0
1	1	1	0	1	0	0	0	0	1	0	0	0
1	1	1	1	0	0	0	0	1	0	0	1	0
1	1	1	1	1	0	0	U	1	U	J	•	-

C. CONNECT	OR PINOUT				
Top of Card -	Component Side		Bottom of Card		
Pin No.	Description		Pin No.	Description	
1	HDAØ		A	HDBØ	
2	HDA1		В .	HDB1	
3	HDA2		С	HDB2	
4	HDA3		D	HDB3	
5	HDGND		Ε	HDGND	
6	DO7		F	DATA READY IRQ	
7	DO6		Н	n/c	
8	DO5	Data	J	n/c	
9	DO4	Output	K	n/c	
10	DO3	Lines	L	Not Busy	
11	DO2		M	Stop	Status
12	DO1		N	Ready	Port
13	DOØ		P	Overrun/Underrun	
14	Data Output Strobe		R	Status Strobe	
15	D17		S	Enable/Disable	
16	D16		Т	Slow/Fast	
17	D15		U	FWD/BKWD	Command
18	D14	Data	V	Stop/Run	Port
19	DI3	Input	W	RCD/READ	
20	DI2	Lines	Χ	ERASE.	
21	DI1		Υ	SEL 2	
22	DIØ		Z	SEL 1	
23	Data Input Strobe		Ā	Command Strobe	
24	+9V Out		B	Manstop	
25	ENG3		C	ENG2	
26	SUP3		D	SUP2	
27	FWD3		Ē	FWD2	
28	REV3		<u>F</u>	REV2	
29	ALLENGSW		Ħ	ALLENGSW	
30	ALLENGSWGND		J	ALLENGSWGND	
31	CAPSUPPLY		₹	CAPSUPPLY	
32	ALCAP		시시마이미르르크 지역 B C I 이 트 트 I 그 K I I I I	ALCAP	
33	ENG1		M	ENGØ	
34	SUP1		N P R	SUPØ	
35	FWD1		P	FWDØ	
36	REV1		R	REVØ	

Note: n/c = no connection

Pin 1 on 22-pin connector = +5V Pin 2 on 22-pin connector = GND Pin 22 on 22-pin connector = +12V

D. TRANSISTOR ORIENTATION

Transistor	Case
2N6109	D
2N5139	A or B
2N5129	A or B
2N4403	В
2N6410	F
MJE2050	Ε
MPF971	С

E. DRIVER SOFTWARE DESCRIPTION

The software supplied with the Digital Group Cassette Storage System contains deck control subroutines to allow the user to concentrate on applications. The READ and RECORD routines provide all error recovery during read, and data verification during record.

The software package consists of several major routines to aid the user in controlling the decks. These are the RECORD, CMDOUT, READ, and REWIND routines. There are numerous minor subroutines the user may invoke if he feels the need to control the deck on a more basic level.

The sample Z-80 program given below is a simple example of how to use the major routines. The sample program will read the tape on deck Ø and write the data on deck 1, one block at a time. This program will halt if an unrecoverable error occurs. The major routines are described in more detail following the example. This program will only copy tapes that have been recorded using the format detailed in Appendix F.

- * SAMPLE PROGRAM TO COPY A TAPE
- * ON DECK Ø TO A TAPE ON DECK 1
- * ONE BLOCK AT A TIME

* ONE BLOCK AT A T LABEL	TIME OP	OPERAND	COMMENT
START	LD	A,Ø	SET DECK 0
	LD	(DECK),A	DEWIND DEOUG
	CALL	REWIND	REWIND DECK Ø
	LD	A,1	SET DECK 1
	LD	(DECK),A	DEWIND DECK 1
	CALL	REWIND	REWIND DECK 1 CLEAR REGISTER A
	SUB	A (TEMPLE) A	INITIALIZE ID
	LD	(TEMPID),A TAPEIN	WAIT FOR NOT BUSY
REDBLK	IN AND	Ø8H	BECAUSE THE DECK
	JP	Z.REDBLK	NUMBER IS CHANGING
	LD	A,Ø	SET DECK Ø
	LD	(DECK),A	31 31 31
	LD	HL,BUFFER	SET UP POINTER
	LD	(POINTER),HL	
	LD	A,(TEMPID)	SET UP ID
	LD	(IDR),A	
	LD	E,0	SET READ MODE
	CALL	READ	READ BLOCK
	PUSH	AF	SAVE REGISTER A
	LD	C,FØH	STOP DECK
	CALL	CMDOUT	
	POP	AF	RESTORE REGISTER A
	CP	Ø	ERROR?
	JP	Z,WRTBLK	NO
	CP	2	BLOCK FOUND?
	RET	Z	NO, FINISHED
	HALT		HALT BECAUSE ERROR
WRTBLK	IN	TAPEIN	WAIT FOR NOT BUSY
	AND	Ø8H	BECAUSE THE DECK
	JP	Z,WRTBLK	NUMBER IS CHANGING SET DECK 1
	LD	A,1	SET DECK 1
	LD	(DECK),A	SET UP POINTER
	LD	HL,BUFFER (POINTW),HL	321 01 10111211
	LD LD	A.(TEMPID)	SET UP ID
	LD	(IDW),A	0E / 0D
	INC	A	INCREMENT ID
	LD	(TEMPID),A	
	LD	A,B	SET UP COUNT
	CP	Ø	256?
	JP	Z,X256	YES
	LD	L,B	
	LD	H,Ø	
	JP	CALROD	
		-24-	
		- 4-	

X256	LD	H,1 L.Ø	
CALRCD	LD CALL CP	RECORD Ø Z.REDBLK	RECORD BLOCK ERROR? NO, COPY NEXT BLOCK HALT BECAUSE ERROR
	JP HALT	Z,REDBLK	
TEMPID	DS	1	
BUFFER	DS	256D	
	END		

The REWIND routine will stop the operating deck, select the specified deck, and rewind it. This routine returns to the calling routine after the selected deck has been rewound and readied for another command. Memory location "DECK" must contain the selected deck number (in binary) before the routine is called.

The RECORD routine will record data in the standard block format and then check the recorded data to verify that it was recorded without error. If an error is detected, that portion of the tape is erased and all the remaining data is re-recorded. This process is repeated until all data has been recorded successfully, or an unrecoverable error is detected.

As the user records data he must record blocks in sequence starting with IDW = 0, 1, 2, etc. Numbers may not be skipped! After a series of blocks have been recorded, the user may re-record a block, but all old blocks following the new blocks may be lost. Although not absolutely necessary, it is recommended that tapes be erased with a bulk eraser or using the Phideck in erase mode to obtain maximum performance and prevent the controller software from becoming confused with the old data.

In order to use this routine properly, the input variables must be set up properly:

- 1. The deck number must be placed in memory location DECK.
- 2. The low order byte of the block ID must be placed in memory location IDW, and the high order byte must be placed in IDW+1.
- 3. The low order byte of the address of the first byte to be recorded is placed in memory location POINTW, and the high order byte is placed in POINTW+1.
- 4. The number of bytes to be recorded is placed in register pair H and L. A count of zero will cause the record routine to simply return without recording any data.

When the record routine returns control to the calling routine, the registers and memory are modified as follows:

- 1. All Registers are altered.
- 2. IDW returns the ID of the last block recorded plus one.
- 3. POINTW points one location greater than the last byte recorded.
- 4. The error code is returned in the A register and should be checked after every call to the RECORD routine. The error codes are:
 - Ø Record completed with no errors
 - 1 CRC error in block ID-1
 - 2 Block ID-1 not found
 - 3 End of tape or jam

The READ routine will read one block and return to the calling routine. The deck is left running so the user must either read another block or issue a stop command to the deck directly (see the CMDOUT routine).

To use this routine the following variables must be set up properly:

- 1. The deck number is placed in memory location DECK.
- Memory location IDR contains the low order byte of the ID of the block to be read. IDR+1 contains the high order byte.
- 3. Memory location POINTR contains the low order byte of the address of where the data is to be deposited. POINTR+1 contains the high order byte.
- 4. Register E contains the mode. Ø indicates that the data block is to be read into memory starting at the location specified by POINTR. 1 indicates that the data block is to be checked for errors only (in this mode POINTR is not used).
- 5. RETRYS (Register D) should be initialized only if the ALTRD or ALTRD2 entry points are used. It is automatically initialized to 10 if the READ entry point is used. The user should normally use the READ entry point.

When the read routine returns control to the calling routine, the registers and memory are modified as follows:

- 1. Registers A, B, C, D, H, and L are modified.
- 2. COUNT (Register B) contains the number of bytes contained in the block:
 - Ø = 256 bytes
 - 1 = 1 byte
 - 2 = 2 bytes
 - 255 = 255 bytes
- 3. ERROR (Register A) contains the error code after a read operation has been completed. The error codes are:
 - Ø No errors
 - 1 Unrecoverable data error
 - 2 Unable to find block specified by ID
 - 3 End of tape or jam

The CMDOUT routine is used to issue commands to the transport. Memory location DECK must contain the number of the deck that is referenced by command. Register C must contain the command to be issued to the deck. The valid commands are:

COMMAND	VA	LL	E	N RE	EGISTER C
STOP	1	1	1	1	0 0 0 0
FAST FORWARD	1	0	1	0	0 0 0 0
FAST REVERSE	1	0	0	0	0 0 0 0
READ	1	1	1	0	0 0 0 0
RECORD	1	1	1	0	1 0 0 0
ERASE	1	1	1	0	1 1 0 0
STANDBY	0	1	1	1	0 0 0 0

F. RECORDING FORMAT

This appendix shows the block format as it is recorded on the tape by the driver software and controller. Each byte recorded on the tape consists of 10 bits or flux changes (see hardware description).

DESCRIPTION	BYTES RECORDED
75 one bits SYNC character ID high ID low COUNT CRC 1 CRC 2 DATA	7.5 .5 1. 1. 1. 1. 1. to 256
CRC 1 CRC 2	1. 1.
TOTALS*	16 to 271

^{*}The record routine will erase to an equivalent of 271 bytes for short blocks so that all blocks will be the same size.

G. PROGRAM TAPE AND LISTINGS

The tape supplied with the program listing is an AUDIO CASSETTE recorded at 1100 Baud in Suding format. This **WILL NOT** load from the Phideck.

The program tape contains the following programs in the order given in a 64 character version then a 32 character version for a total of eight tone bursts.

- 1. Phideck Demo for Z-80
- 2. Z-80 Ops System
- 3. Phideck Demo for 8080
- 4. 8080 Ops System

Each program includes the Phideck driver routines in the program listing in locations @900H thru @B9DH. The Demo Software is included as an aid in testing the controller.

Note: Listings are provided only for the Z-80 Software, however, the 8080 Driver Software object code is exactly the same as for the Z-80.

USING PHIDECK DEMO SOFTWARE

- 1. Programs are loaded via audio cassette.
- 2. At completion of a successful load a listing of Phideck commands will be displayed.
- 3. In addition to the displayed options, there are three possible options "R", "S", and "P".
- 4. "R" will return control to the Operating System.
- 5. "S" will display memory in either hex or octal depending upon last option (hex or octal) chosen by the user.
- 6. "P" will allow user to program as in the Operating System in either hex or octal depending upon last method chosen.
- 7. Reset will return control to Phideck Ops.
- 8. "P", "R", and "S" will operate when in Storage Dump, Program, or Phideck Ops.
- 9. Phideck option "#" allows the user to select any of 4 decks (Ø-3) by pressing shift # then desired deck number. To return to Phideck Ops press Y. The selected deck number will be displayed in the options listing upon return.
- 10. Phideck option "0" will copy a tape from deck 0 to deck 1. This is not intended as an efficient method of duplicating tapes, only as a demostration of Phideck routines. Only tapes recorded in the format detailed in Appendix F may be copied using this option.
- 11. Page@DH is being used as a 256 byte buffer in the Copy Tape option.
- 12. Phideck option "1" will erase a tape on the selected deck.
- 13. Phideck option "2" will fast reverse the selected deck.
- 14. Phideck option "3" will fast forward the selected deck.
- 15. Phideck option "4" will place all decks in standby. The capstan motors will be turned off.
- 16. Phideck option "5" will stop the selected deck.
- 17. Phideck option "6" will issue a read command to the selected deck. This will not read data from a tape.
- 18. Phideck option "7" will issue a record command to the selected deck. This will not record data on a tape.
- 19. Phideck option "8" will record 256 byte blocks of data in a fixed pattern. The test data recorded is not formatted in accordance with Appendix F.
- 20. Phideck option "9" will read byte blocks of data from a tape in a fixed pattern. An "e" will be displayed on the monitor for blocks in error and a "g" for good blocks.

Z-80 DRIVER SOFTWARE

```
LABEL OP
                                 OPERAND COMMENTS
LOC OBJ
                             ST 0900H
8966
                 2252
                 2120 * RECORD (UNTIL COUNT EXHAUSTED)
0900
                 2112 * DECK IS STOPPED AFTER RETURN
0900
                 2120 * INPUT:
0002
                 2132 *
                            DECK - DECK NUMBER LOCATED IN MEMORY
88.88
                            POINTW - LOCATED IN MEMORY
                 0140 *
89KR
                                        (FIRST DATA BYTE)
                 2168 *
0500
                            IDW - LOACTED IN MEMORY (FIRST BLOCK)
                 2162 *
2900
                 6170 *
                            COUNT - REGISTER F.L
9968
                 2180 * OUTPUT:
2516
                 2196 * POINTW - LOCATED IN MEMORY
0900
                 0200 ×
                                      (LAST DATA EYTE + 1)
0922
                             FHROR - REGISTER A
                 0210 *
252V
                 8228 *
8588
                                     0 - NO ERRORS
                 6237 *
                                     1 - CRC ERROR IN ELOCK
29k.K
                                        IDu - 1
                 2242 *
2902
                                     2 - BLOCK IIW-1 NOT FOUND
                 2252 *
292V
                 2260 *
                                     3 - TAPE END OR JAM
898k
                 227€ *
                        IIW - LOCATED IN MEMORY
25000
                 228x *
                                   (LAST BLOCK + 1)
258k
                 6298 *
8388 *
                 8290 *
                             ALTERED
0960
                                  REGISTERS - A.F.C.F.E.H.L.IDR.POINTR
2500
6964 16 61
6922 18 65
                 2312 RECORD LD
                                 D.1D
                                       ERASE=1
                             LE E,5D
                                        STOPS=5
                 6320
                             FUSH HI
                                         COUNT
7974 F5
                 2338
                                        ERASE, STOPS
2905 IE
                 2340 RCD20 PUSH DE
                 0350 LD
                                  HL, (IDA)
PERE ZA ES VA
                                 HI IDR = IDW - 1
                 23EV
                            DEC
2525 2F
298A 22 F1 8A
                 0370
                            LD
                                  (IDR).HL
090D 23
                 038V
                            INC HL
                 2397
                                        IDW = 2?
252E 71
                            LD A.I
                            OR E
290F 14
                 6422
                           LI D.11D RETRIES = 10
LL E.1D CHECK NO.
                 2410
0910 CA 29 09
0913 16 0F
0915 1E 01
                 8420
                 2430
                            CALL ALTRD
0917 CD 7E 7B
                 0440
                            INC A
                                         FEROE?
291A 30
                 6450
                            DEC A
091B 3D
                 6462
                                  Z,RCD13 NO
                 Ø476JPZ,RCD13 NOØ4e2 ECF12FOFDEERASE, STOPS
0910 CA 3€ 09
291F D1
                                         COUNT
                 2492 HCI21 POP HL
6928 L1
                 0500 RCD27 LD C,90H STOP
0921 0E 91
                            LD B.A
                                         SAVE ERROR
2522 47
                 251 W
                Ø 53 8
                             CALL CMDOUT
V914 CI 98 WA
1927 78
                 Ø530
                                        RESTORF ERROR
                            LD A.P
V528 (S
                 2542
                             RET
9923 (I 47 8A
                 2550 ACI10 CALL REWIND
                             LD C.ØECH ERASE
2920 RF EC
                 2508
                             CAIL CMDOUT
                 2572
252E CD SE 2A
                             LD A,50D 5 SECONDS
2931 3E 32
                 8.5.88
                             CALL DELAY
                 K 590
2933 CD 81 &A
                 RECORDED BRASE, STOPS
0936 I1
                             PUSH DE
0937 DE
                 261 L
                                         FRASE (BRASE - 1) BLOCKS
                 2620 ROD15
                            DEC D
2938 15
                            JP Z.RCD14
6655 CA 48 68
                €63.7
                             LD C, ØECH ERASE
2930 VE SC
                 2642
```

```
Ø650
                           CALL CMDOUT
293E CD SE VA
                           PUSH DE
                 2662
0941 L5
0942 CD DA 09
0945 L1
                 067£
                            CALL RECRD1
                            POP DE
                 26eX
                             JP RCD15
                 2694
2946 C3 38 29
                 6700 ACD14 POP HL
                                        ERASE. STOPS
0949 E1
                             POP DE
                                        COUNT
054A D1
                 6712
                            PUSH DE
                 Ø728
094E I5
                            PUSH HL
                 2732
0940 E5
                                 HL. (POINTW) POINTER
                             \Gamma D
294D 2A F7 2A
                 2742
                                        COUNT FIGH =@?
                 C752 ACD19 DEC D
0950 15
                 6760
                             INC D
6951 14
                                 NZ.RCD16 NO
                            JР
0952 C2 D4 09
                 0777
0955 1D
                 0760
                            DEC E
                            INC E
0956 1C
                 2790
                            JP Z,RCD17 YES
2957 CA 81 29
                 2822
                            LD B.E COUNT = COUNTL
295A 43
                 Ø818
                 0820
095F 1E 02
095I D5
                                  E,ØD
                                       CCUNTL =0
                            \mathbf{L}\mathbf{D}
                 2832 RCL18 PUSH DE SAVE CCUNT
                                 DE.HL
                 0840
                             ĿΧ
095E EB
                                 HL, (IDR)
                 0850
                             LD
095F 2A P1 0A
                             INC HL
Ø962 23
                 0.860
                                 (IDR),HL
0963 22 B1 0A
                 Ø870
                            L(\Gamma)
                            \mathbf{E}\mathbf{X}
                                 DF,HL
                 Ø88Ø
89€€ EE
               0850
0900
0910
0920
                           LD
                                 C.ØE8H RECORD
                          CALL CMDOUT
CALL RECRD1
0967 2E Ed
2969 CD 9B &A
2960 CD DA 29
096F DF 02
                           ΙN
                                  TAPEIN ERROR?
0971 E6 0D
                Ø930
                            AND ØDH
6643 P1
                0940
                            POP DE
                                        GET COUNT
                                  Z,RCD19 NO
                           JP Z.RC
POP DE
7974 CA 52 K9
2977 I-1
               2850
                2966
                                        DECREMENT STOPS
                 6976
                            DEC E
                                         0?
0978 1D
                            JP
                                  NZ.RCD2@ NO
               298Ø
Q979 02 Q5 Q9
                                  A.3D
                                        EKROR=3
                 0990
                             LD
2970 3E 23
                            JP
                                  RCD21
0971 03 20 09
                1000
                                        APPROXIMATELY 6 FLOCKS
                 1212 RCD17 LD
                                 A.3D
0951 3E 03
                             CALL FR
2983 CT 68 2A
                1020
                                        ERASE. STOPS
                             POP HL
0986 E1
                 1030
                                        COUNT
                             POP DE
2987 II
                1040
0988 F5
                1050 RCD26 PUSH DE
                             PUSH HL
                1060
096A 97
                                         COUNT = ??
                1072
                             SUF A
                1080
                             ADL D
09EB E2
                             JP NZ, RCD22 NO
0980 02 93 k9
                 1092
                             ADD E
288 I829
                 1100
                                  Z, RCD12 YES
2992 CA 1F 09
                             JP
                 1110
                                HI.(IDW)
                 1120 RCD22 LD
0993 2A E5 6A
                                  (IDR).HL
                 1130
                             ID
0996 22 P1 2A
                                  D,6D RETRIES = 6
                 1140
                             LD
0999 1€ 06
                 1150
                             LD
                                  E,1D
                                         CHECK MODE
099E 1F 01
                             CALL ALTRD2
2991 CD BE &A
                 1160
                                         ERROR?
                 1170
                             INC
                                 Α
29A2 3C
                 1180
29/1 3D
                             DEC
                             POP DE
QSA2 T1
                 1190
                                  Z,RCD24 NO
                             JΡ
0943 CA AA 09
                 1200
                                         INCREMENT ERASE
                 1212
                             INC
                                 D
09AE 14
                                  RCD2@
                             JΡ
0947 CZ 25 29
                 1222
                 1230 RCD24 LD
                                  D.1D
                                        EFASE=1
29AA 16 21
                                  HL. (IDW) INCREMENT IDW
                             LD
09AC 2A B5 &A
                 1248
                 1252
                             INC
                                  HL
SS TABS
```

```
LD
09b0 22 B5 0A
                  1260
                                     (IDW).HL
0913 EE
0914 D1
                   1270
                               \Xi X
                                     DF.HL
                               POP
                  1200
                                    DE
29B5 14
                  1298
                               INC
                                    D
                                            COUNTH = 2?
0916 15
                  1300
                               DEC
                                    T
                                     Z,RCD25 YES
09B7 CA C7 09
                  1310
                               JР
09EA 15
                   1320
                               DEC D
                                            DECREMENT COUNTH
09FB E5
                  1330
                               PUSH HL
09BC 2A B7 0A
                  134 L
                               LD
                                    HL. (POINTW)
29BF 24
                   1358
                               INC H
2902 22 F7 ØA
                  1366
                               LD
                                    (PCINTW), HL
0903 E1
                               POP HL
                  1370
                               JΡ
29C4 C3 88 29
                  1380
                                    RCD26
                                    HL. (POINTW) ADD COUNTL TO POINTER
0907 2A E7 &A
                  1392 ROD25 LD
09CA 16 00
                               LD
                                    D,ØD
                  1400
09CC 19
09CD 22 E7 0A
                               ADD HI.DE
                   1410
                  1422
                               LD
                                    (POINTW).HL
                               SUB A
09D0 97
                                           ERROR = \emptyset
                  1432
09D1 C3 21 09
                  1440
                               JP
                                    RCD27
                  145% RCD16 DEC D
                                           DECREMENT COUNTH
(9D4 15
69D5 66 60
                  1462
                               \Gamma D
                                    B.ØD
                                            COUNT=0
09D7 03 5D 09
                  1472
                                    RCD18
                               JР
0STA
                  1480 * RECRD1 (RECORD ONE BLOCK)
                  1490 *
                                  RECORD OR ERASE COMMAND MUST BE ISSUED
COLA
2911A
                  1500 *
                                     BEFORE CALLING.
                  1510 *
                                  UNDERRUN AND STOP SHOULD BE CHECKED
REIA
                  1528 *
AC99
                                    AFTER RETURN.
                  1530 *
29 DA
                  1540 *
                                  INPUTS:
29IA
                  1550 *
                                    DECK - DECK NUMBER LOCATED
291 A
                  1560 *
                                            IN MEMORY
09DA
                  1572 *
QQDA
                                    ID - REGISTER D.E
                  1580 *
                                    CCUNT - REGISTER F
29IA
                                             (\emptyset1=1 BYTE, \emptyset0=256 HYTES)
                  1590 *
29DA
                                PCINTER - REGISTER H.L
                  1600 *
QQDA
                  1612 *
                                               (FIRST DATA BYTE)
291A
                                   OUTPUT:
                  1620 *
09DA
                  1632 *
                                     POINTER - REGISTER H.L
2SDA
                  1640 *
                                       (LAST DATA BYTE + 1)
09DA
                  1650 *
                                    ALTERED
69DA
                  1660 *
291:A
                                     REGISTERS - A.F.C.D.E.H.L
                  1670 RECRD1 PUSH HI
                                           PUSH POINTER
091A E5
                           LD
09DE 21 60 00
                  1682
                                   HL.0D
                                          RESET CRC
                               \Gamma \Gamma
                                    C,D,
                                            ID HIGH
COTE 4A
                  1652
                  1702
                              CALL ALTPUT
291F CD 49 ØA
                                    C \cdot E
29E2 4F
                               L \Gamma
                                            ID LOW
                  1716
                               CALL PUT
68 F3 CD 42 68
                  1728
                                            COUNT
                  1730
                               L\Gamma
                                    C,B
2916 48
09E7 CD 42 0A
                  1748
                               CALL PUT
09 EA 54
                  1750
                               LD
                                    D,H
                                            SAVE CRC2
69FB 4I
                  1762
                               L\Gamma
                                    C,L
                                            CRC1
291C CD 42 8A
                  1770
                               CALL PUT
                                    C.D
                                            CRC2
                  1782
                               LD
QSEF 4A
                               CALL PUT
29F0 CI 42 0A
                  1750
                                            SAVE COUNT
                               LD
                                    E.B
09F3 58
                  1800
                  1810 RECD1 EX
                                    (SP), HL SWITCH CHC, POINTER
2914 E3
                                    C, (HL) LOAD DATA
2915 4E
                  1820
                               LD
                                            INCREMENT POINTER
                               INC
                  1830
                                   _{
m H\, L}
09F6 23
                                     (SP), HL SWITCH CRC, POINTER
QSF7 F3
                  1840
                              FΧ
                               CALL PUT
09F8 CT 42 0A
                 1850
                                            DECREMENT COUNT
                              DEC B
                  1860
09FB 05
                                    -32-
```

```
      Ø9FC
      C2
      F4
      Ø9
      1872
      JP
      NZ,RECD1
      NOT
      ZERO

      Ø9FF
      54
      1880
      LD
      D,H
      SAVE
      CRC2

      ØAØØ
      4D
      1890
      LD
      C,L
      CRC1

      ØAØ1
      CD
      42
      ØA
      1900
      CALL
      PUT

                                                                                                         1900
1910
                                                                                                                                                                            LD C.D
                        @A@4 4A
                                                                                                                   1910
                                                                                                                                                                                                                                       CRC2
                                                                                                       1920
1930
                                                                                                                                                                             CALL PÚT
                        @A@5 CD 42 @A
                        2A28 1D
                                                                                                                                                                                                                                         DECREMENT SAVED COUNT
                                                                                                                                                                              DEC E
                                                                                                       1940 RECD3 CALL PUT
1950 INC E
                        @A@9 CD 42 @A
                        2A2C 1C
                                                                                             1950 INC E INCREME!
1960 JP NZ,RECD3 NOT ZI
1970 CALL PUT
1980 FCP HI PCP POIN
1990 RET
2000 * GET
2010 * CRC IN H,I
2020 * DATA RETURNED IN C
2030 * A,C,H,I ALTERED
2040 GET IN TAPEIN STATUS
2050 AND OFH
2060 JP Z,GET
2070 CALL DIN
2080 CRC PUSE DE
2090 LD A,C
                                                                                                                                                                                                                                           INCREMENT SAVED COUNT
                                                                                                                                                                      JP NZ, RECD3 NOT ZERO
CALL PUT
FOR HI POP FOINTE
                        0A01 C2 09 0A
                        @A1@ CD 42 @A
                       @A13 E1
                                                                                                                                                                                                                                       PCP POINTER
                       @A14 C9
                       2A15
                       0A15
                      @A15
                      @A15
                      0A15 DE 02
0A17 E6 0F
                       2A19 CA 15 &A
                      AS IS CD, DIAS
                       eaif b5
                      0A20 79
                                                                                                           2090
                                                                                                                                                                            LD A,C
                                                                                                   2100 XOR L
21100 LD L,A
21200 LD E,7D
2130 CRCA RLA A
21400 XOR L
                      2A21 AD
                      @A22 6F
                      0A23 1H 07
0A25 17
                                                                                                                                                                                                                                      7 TIMES
AL
1D
C2 25 0A
6F 2160
0F 2180
                     enco AD
8A27 1D

      QAZ6
      AL

      QAZ7
      1D
      2150

      QAZ8
      C2
      25
      QA
      2160

      QAZB
      GF
      2170

                                                                                                                                                    DEC E
JF NZ,CRCA DONE?
```

```
0A4F 2E 92
                   2482 REWIND LD
                                    C.90H STOP
                                CALL CMDOUT
éasi co se ca
                   2490
@A54 DB @2
                   2500 REWB
                                ΙN
                                      TAPEIN
2A56 E6 28
                   2517
                                \mathtt{ANT}
                                      Ø8E
                   2520
CASE CA 54 ZA
                                JP
                                      Z, REWB
98 ED 85A9
                   2530
                                LD
                                      C.80H FR
CASD CD 9F CA
                   2540
                                CALL CMDOUT
0A66 DF 02
                   2550 REWA
                                IN
                                     TAPEIN
0A62 E6 08
                   2560
                                AND
                                    8 D
CA64 CA 60 CA
                   2572
                                JΡ
                                      Z.REWA
@A67 C9
                   2560
                                RET
CAER
                   2590 *
                                FAST REVERSE, FAST FORWARD
PAES
                   2600 *
                                REGISTER A CONTAINS MULTIPLE
KACE
                   2610 *
                                OF 100 MILLI-SECONDS DELAY
                   2620 *
0A68
                                REGISTER A ALTERED
@A68 C5
                   2630 FR
                                PUSE BC
2A69 F5
                   2648
                                PUSH AF
PACA OF 88
                   2650
                                LD
                                     C.80H
646C CD 88 64
                                CALL CMDOUT
                   2660 FRA
CACF F1
                   2670
                                POP AF
2A79 CD 81 04
                   2680
                                CALL DELAY
2A73 VE 92
                   2692
                                LD
                                     C.90H
2A75 03 02 2A
                   2760
                                JΡ
                                     STOP
2A78 C2
                   2710
                                NOP
2479 60
                   2720
                                NOF
                                PUSH BC
CATA C5
                   2730 FF
                   2740
                                PUSH AF
@A7B F5
                   2752
                                L\Gamma
QA7C QE AØ
                                     C.ØAØH
@A7E C3 6C @A
                   2760
                                JP
                                     FRA
                                DELAY MULTIPLE OF 100 MS IN REGISTER A
                   2770 *
ØA81
                   2780 *
                                REGISTERS A.B.C ALTERED
2A21
                                     BC,29B4H
                   2790 DELAY
@A&1 @1 B4 29
                                L\Gamma
ØAE4 6E
                   2800 D1
                                DEC
                                    ВC
0A85 04
                                     В
                   2810
                                INC
28 83AS
                   2820
                                DEC
                                     B
2A87 C2 84 &A
                   2830
                                JΡ
                                     NZ,D1
                                    Α
CASA ID
                   2842
                                DEC
                                     NZ.DELAY
2AEB C2 81 0A
                   2850
                                JΡ
                   2860
                                RET
2A8E C9
                   2872 *
                                INFUT DATA BYTE (DATA RETURNED IN C)
2ABF
                  288Ø *
8AEF
                                REGISTER A IS ALTERED
CASE SE EF
                  2890 DIN
                                LD
                                     A, ØEFE
                                OUT
                                    STROBE
0AS1 13 01
                  2900
                                ΙN
                                     TAPEIN
2A93 DB 02
                  2912
2A95 4F
                   2920
                                LD
                                     C,A
2ASE SE DE
                   2930 DINA
                                LD
                                     A, ØDFH
0AGE 13 01
                                OUT
                                     STROBE
                   2940
                                RET
@A9A C9
                   2950
                   2960 *
                                OUTPUT COMMAND (DATA IN REGISTER C)
CASE
                   2970 *
                                DECK IS OR'D WITH DATA
@ASF
                   2980 *
                                REGISTER A IS ALTERED
@A9B
                  2990 CMIOUT LD
                                     A, (DECK)
ØASE 3A FØ ØA
                   3000
                                OR
                                     C
CASE E1
                                OUT
                                     TAPOUT
@A9F D3 @2
                   3010
                                     A.9FH
QAA1 3E 9F
                   3020
                                \Gamma \Gamma
2AA3 I3 Ø1
                   3030 CMDA
                                OUT
                                     STROBE
2AA5 C3 96 @A
                   3840
                                JΡ
                                     DINA
                   3050 ×
                                OUTPUT DATA (DATA IN REGISTER C)
BAAS
                   3260 *
                                REGISTER A IS ALTERED
SAAS
CAAS 79
                   3070 DOUT
                                LD
                                     A,C
                                     TAPOUT
                                OUT
2AA9 L3 02
                   3080
                                     -34-
```

```
3090
                            LD A,5FH
CAAB 3E EF
                             JP CMDA
QAAD C3 A3 QA
                3100
                 3116 *
                             VARIABLE DATA AREA
QABØ
                                         DECK NUMBER TO BE USED
                 3120 DECK
                             DS 1D
CARO
                 3130 IDR DS 2D
3140 POINTR DS 2D
                                         READ ID
ØAF1
                                         READ POINTER
0A E 3
                 3150 IDW DS
                                  2 [
                                         WRITE ID
CAE5
                 3160 POINTW DS 2D
3170 * READ ONE
                                          WRITE POINTER
QAF7
                          READ ONE BLOCK
0 A B 9
                                DECK REMAINS RUNNING AFTER RETURN
                 3180 *
ØA E9
                 3190 *
3200 *
                              INPUT:
QAF9
                             DECK - DECK NUMBER LOCATED IN MEMORY
2AF9
                               POINTR - LOCATED IN MEMORY
                 3210 *
ØAB9
                                          (FIRST BYTE)
                 3220 *
GAFS
                              IDR - LOCATED IN MEMORY
                 3232 *
QAF9
                               RETRYS - REGISTER D
                 3240 *
QAB9
                                          (ALTRD ONLY)
                 3250 *
                              MODE - REGISTER E

Ø=READ

1=CHECK
CAF9
                3250 *
3260 *
3270 *
3280 *
3290 *
3300 *
3310 *
3320 *
&AB9
CAB9
                            CUTPUT:
                                       1=CHECK
2AE9
OABG
                                DECK, POINTER, IDR UNCHANGED
CAP9
                                 REGISTER - A.B.C.D.H.L ALTERED
QAP9
                                 COUNT - REGISTER B
QAES
                 3330 *
                                           @1=1 BYTE
CAR9
                 3342 *
                                           \emptyset\emptyset=256 BYTES
ZAES
                                ERROR - REGISTER A
                 3350 *
CAB9
                                           Ø=NO ERRORS
                 3360 *
2 A F9
                                           1=CRC ERROR
                 3370 *
CAES
                                           2=BLOCK NOT FOUND
                 338Ø *
ØAB9
                                           3=END OF TAPE OR JAM
                 3390 *
CAP9
                              ENTRY POINTS:
                 3422 *
2AES
                                   READ - NORMAL ENTRY
                 3410 *
0.AB9
                3420 *
3430 *
3440 *
3450 *
3462 READ
3470 RD54
                                    ALTRD - DECK WILL PACKSPACE
@AF9
                                             FIRST, USER MUST SUPPLY RETRIES
2AF9
                              ALTRD2 - NORMAL, EXCEPT USER MUST
QAP9
                                              SUPPLY RETRIES.
DAFS
                             LD D,10D RETRIES
ØAB9 16 ØA
                                           RETRIES, MODE
                             PUSH DE
CABB D5
                 3480 ALTRD2 EQU RD54
CAEC
                                  HL, ØD RESET CRC
                              LD
                3490 RD5
@APC 21 00 00
                  3500
                                    RD51
                              JР
ØABF C3 D2 ØA
                              CALL CMDOUT STOP ROUTINE
                  3510 STOF
CAC2 CD 9B CA
                                           .1 SECOND
                              LD A,1
                  3520
@AC5 3E @1
                  3530
                              CALL DELAY
@AC7 CD 81 @A
                              POP BC
                  3540
QACA C1
                  3550
                              RET
ØACE C9
                                           FAST REVERSE CORRECTION
                  3560 FRCOR CALL FR
2ACC CD 68 2A
                              JP RI2
                  3572
QACE CZ EE QA
                                   C. ØEØH READ
                  3580 RD51
                             LD
ØAI2 ØE EØ
                              CALL CMDOUT
QAD4 CD 9E ØA
                  3590
                             LD B.48H 14 SECONDS
                  3600 RD50
2AD7 06 48
@AD9 5@
                  3610 RD57
                             LI
                                    D \cdot B
                                    TAPEIN STATUS
                  3620 RD53
ØADA DB Ø2
                             ΙN
                                           READY?
                              AND ØFH
CADC E6 OF
                  3630
@ADE C2 90 @B
                              JР
                                    NZ, RD10 YES
                3640
                             DEC DE
                  3650
RAF1 1B
                              INC D
                  3660
2AE2 14
                              DEC
                                    D
                  3678
@AE3 15
                 3680
                              JР
                                    NZ,RD53
ØAE4 C2 DA ØA
                  3680
3680
                              DEC
                                   В
0AF7 05
```

-35-

```
3788
                            JP NZ,RD57
@AEE C2 D9 @A
                 3710
                             CALL REWIND
SAFE CD 4F CA
                              LD A,2D
POP DE
PEC D
RABE 31 07
                 3720 RD2
                                            ERROR=2
                 3730
3740 RD8
CAFO D1
                                           RETRIES. MODE
@AF1 15
                              JF NZ,RD54
RAF2 C2 BB RA
                3750
                 3760
                              RET
@AF5 C9
                3770 RD52
3780
                            CALL GET
                                           IDH
@AF6 CD 15 @A
                             LD B,C
0AF9 41
                              CALL GET
                3790
                                          IDL
ØAFA CD 15 ØA
CARD 59
                 3802
                              ID E.C
                             CALL GET
2AFE CD 15 0A
                3E10
                                          COUNT
6B01 E1
                             LD D.C
                  3820
0102 CD 15 0A
                3830
3840
                 3830
                             CALL GET
                                          CRC1
2B65 CD 15 8A
                             CALL GET
                                           CRC2
                                           CRC=0?
                 3850
                              SUB A
@FØ8 97
                             ADD H
JP NZ
                3860
3870
0E0S 24
                                   NZ.RD5 NO
@B@A C2 BC @A
                3880
3890
                             ADD L
0B0D 85
                             JP NZ,RD5
2FØE C2 BC ØA
                                           NO
                           COMPUTE
                 3900 *
                                           BE TAPEID
ØB11
                 3910 *
                                            -HL IDR
@B11
                 3922 *
                                           = X Y
@P11
                            LD A,E
LD HI,(IDR)
@B11 7P
                 3930
ØB12 2A B1 ØA
                3940
@B15 95
                             SUF L
                 3950
0B1€ 5F
                 3960
                             LD E,A
                                          REGISTER E CONTAINS Y
2B17 6F
                 397Ø
                             LD L,A
               3970
3990
4000
4010
4020
4030
4030
                             LT A.B
@B18 78
                             SBC H
                                          REGISTER A CONTAINS X
2B19 9C
                             LD H,A
ADD HL,HL
                                          H = X Y \setminus S
ØB1A 67
ØF1F 29
@B1C 29
                             ADD HL, EL
ØB1D 29
                             \Gamma \Gamma
2B1E 70
                                   A,H
                             ADD HL, HL
@B1F 29
                 4050
              4060
4070
ØB2Ø CA 38 ØE
                             JP Z.ID1
@E23 F2 3D @F
                             JР
                                  P,ID2
                             ADD H
                 4080
ØB26 84
                                            COMPUTE FF DELAY
@B27 2F
                 4090
                             \mathtt{CPL}
                4100
4110
                                           ADD 1 FOR 2'S COMP
ØE28 06 01
                             ADD 1
                             JP M,ID3
0B2A FA 32 0B
                                            GREATER THAN THRESHOLD?
                4120
4130
                             СP
                                   3
0B2D FE 03
                              JP M,RD5
                                           NO
SESE FA BC SA
                4140 ID3
                             CALL FF
ØB32 CD 7A ØA
@B35 C3 PC ØA
                 4150
                             JP RD5
@F38 1C
                                            Y = \emptyset?
                 4160 ID1
                             INC E
                 4170
                             DEC E
@B39 1D
                             JP Z.RD6
                                          YES
@B3A CA 45 ØB
                 4180
                             A D D H
QE3D 84
                 4190 ID2
ØB3E Ø7
                 4200
                             RLCA
                             ADD 5
                  4210
¢B3F C€ Ø5
                              JP FRCOR
                  4220
6F41 C3 CC 6V
                              NOP
                  4230
6B44 66
                              LD B,D
POP DE
                                            COUNT
@B45 42
                  424Ø RD€
                                             RETRIES. MODE
@B46 D1
                 4250
                              PUSH BC
                 4260
                                             COUNT
2B47 C5
                4270
                              LD HL. (POINTR)
ØB48 2A B3 ØA
                             PUSH HL
@F4F E5
                 4280
                             LD HL, ØD RESET CRC

      @B4C 21 00 00
      4290
      LD HL,0

      @B4F CD 15 0A
      4300 RD66
      CALL GET
```

```
4310
                                  INC
                                        \mathbf{E}
0B52 10
                                        \mathbf{E}
                                  DEC
                    4320
@B53 1D
                                  JP
                                        NZ.RD55
ØB54 C2 5B ØB
                    4330
                                        (SF), HL SWITCH CRC, POINTER
                    4340
                                  \mathbf{E}\mathbf{X}
@B57 E3
                                        (HL), C STORE DATA
@B58 71
                    4350
                                  L\Gamma
                                                BUMP POINTER
                                  INC
ØB59 23
                    4360
                                       HL
                                        (SP).HL SWITCH CRC, POINTER
                                  \mathbf{E}\mathbf{X}
QB5A E3
                    4370
                                                DECREMENT COUNT
                    4380 RD55
                                  DEC
                                        В
@B5B @5
                                        NZ,RD56
                                  JP
2E5C C2 4F 0B
                    4390
                                                ADJUST STACK POINTER
                                  POP
                                        BC
@B5F C1
                    4400
                                  POP
                                        BC
                                                COUNT
                    4410
QBEØ C1
                                  CALL GET
@B61 CD 15 @A
                    4420
                                  CALL GET
@B64 CD 15 @A
                    4430
                                        TAPEIN STATUS
                                  ΙN
ØB67 DB Ø2
                    4440
                                                OVERRUN?
                    4450
                                  RRA
@B69 1F
                                        C,ALTRD YES
                                  JP
0B6A TA 7B 0B
                    4462
                                  RRA
                                        Α
ØBED 1F
                    4470
                                  RRA
                                        Α
                                                STOP?
                    4480
@B6E 1F
                                        C,RD11 YES
                                  JP
@B6F DA 96 @B
                    4490
@B72 97
                    4500
                                  SUE
                                        A
                    4510
QB73 84
                                  AID
                                        NZ, ALTRD NO
                                  JΡ
@B74 C2 7B &B
                    4520
                                  ADD
@B77 85
                    4530
                                        L
                                        Z.RD19
                                  JP
QB78 CA 85 ØB
                    4540
                                                GREATER THAN 1 BLOCK
                                        A.5D
                    4550 ALTRD
                                  LD
ØB7B 3E Ø5
                                  CALL FR
                    4560
@B7D CD 68 ØA
                                  LD
                                        A.1D
                                                ERROR=1
                    4570
@B8@ 3E @1
                                  JΡ
                                        RI8
                    4580
@B82 C3 F1 @A
                    4590 RD19
                                  LD
                                        D,B
                                                SAVE COUNT
@B85 5@
                                                DECREMENT SAVED COUNT
                                        D
                    4600
                                  DEC
@B86 15
                                  CALL GET
@B87 CD 15 @A
                    4610 RD9
                                                INCREMENT SAVED COUNT
                                  INC
                                        D
ØB8A 14
                    4620
                                        NZ,RD9
@B8B C2 87 @B
                    4630
                                  JΡ
                                                ERROR=Ø
                                  SUB
                                        A
CEEE 97
                    4640
@BSF C9
                                  RET
                    4650
                                        Ø4H
                                                STOP?
                                  AND
@B9@ E6 @4
                    4660 RD10
                                        Z.RD52 NO
                                  JΡ
@B92 CA F6 ØA
                    4670
                    4680
                                  POP
                                        DE
                                                RETRIES, MODE
@E95 D1
                                  CALL REWIND
                    4690 RD11
2596 CD 4F ØA
                                        A,3D
                                                ERROR=3
@B99 3E @3
                    4700
                                  \Gamma D
                                  JР
                                        RD8
@B9B C3 F1 @A
                    4710
```

H. PHIDECK MAINTENANCE

Recommended Field Maintenance

This maintenance schedule consists of recommended maintenance operations to be performed in the field by operating personnel and service technicians. Schedule A consists of cleaning operations that should be performed every ten to twenty hours of operating time. Since the accumulation of dirt and tape oxide is highly dependent upon operating environment and the quality of tape used, the time interval for Schedule A can be varied according to system experience. The Schedule A cleaning operations are simple enough that they can be performed by operating personnel in many systems.

The items in Schedule B should be performed by technically skilled personnel.

Required Equipment For Schedule A

- 1. Tape head cleaner or pure isopropyl alcohol
- 2. Rubber drive cleaner
- 3. Cotton tip wood swabs (Q-Tips)
- 4. Soft bristled brush
- 5. Tape head demagnetizer

Schedule A (10 to 20 hour intervals)

- 1. Remove accumulated dust, tape oxide particles, etc. with a soft bristled brush.
- 2. Clean magnetic head and tape guides with tape head cleaner or isopropyl alcohol.
- 3. Clean the capstan shaft with a cotton tip swap moistened with tape head cleaner. **Do not allow** tape head cleaner to run down the capstan shaft into the capstan bearing. Use only enough cleaning liquid on the cotton tip swab to remove tape oxide from the exposed portion of the capstan shaft.
- 4. Clean pinch roller with rubber drive cleaner or isopropyl alcohol.
- 5. Demagnetize the tape head using a tape head demagnetizer.

Schedule B (500 hour intervals) Maintenance Guide

This maintenance schedule consists of recommended maintenance checks and operations to be performed in a facility equipped for tape deck repairs and maintenance. For greatest system reliability, this procedure should be performed on a regular basis at intervals of approximately 500 hours of tape deck operating time. Where such maintenance is not performed on a scheduled basis, this routine should be performed whenever a tape deck is returned to a repair facility for repairs.

Required Equipment

- 1. Tape head cleaner or pure isopropyl alcohol
- 2. Rubber drive cleaner
- 3. Lightweight machine oil
- 4. SAE 10 wt. oil
- 5. Cotton tip wood swabs (Q-Tips)
- 6. Soft bristled brush
- 7. Tape head demagnetizer
- 8. Information Terminals M-300 Tape head and guide gauge set
- 9. Oscilliscope
- 10. Speed test tape
- 11. Miscellaneous hand tools
- 12. Frequency counter

Cleaning

- 1. Clean Phideck throughly. Remove accumulated dust, tape oxide particles and lint with air hose or brush.
- Demagnetize tape head.
- 3. Clean tape head and tape guides with liquid cleaner and cotton swab. Use only a commercial tape head cleaning fluid or pure isopropyl alcohol.
- 4. Clean capstan shaft with a cotton tip wood swab moistened with tape head cleaner. Do not allow tape head cleaner to run down the capstan shaft into the capstan bearing. Use only enough cleaning liquid on the cotton swab to remove tape oxide from the exposed portion of the capstan shaft.
- 5. Clean capstan drive rubber roller. Use rubber drive roller cleaner or pure isopropyl alcohol.

Lubrication

- 1. Oil the headbar pivot bushings using a drop or two of SAE 10 weight oil. Wipe off excess oil.
- Apply a drop of lightweight machine oil to the capstan bearing where the capstan shaft enters the bearing. Clean any excess oil from the capstan shaft.

Drive Belts

- 1. Remove the plastic cassette well and check the two reel drive belts. The belts should be replaced if there are any signs of splitting, cracking, or wear.
- Check the belts for slippage by stalling the associated reel post while in the Fast Forward mode for the takeup reel and Rewind mode for the rewind reel. The belts should be replaced and the pulleys cleaned if there is belt slippage during the stalled condition.
- 3. Check the capstan flywheel drive belt for cracking, splitting, or wear. Replace if necessary.

Alignment Checks and Adjustments

- Using the Information Terminals M-300 gauge set and with the headbar engaged, check head depth of penetration, zenith and guide height. The parameters being out of tolerance indicate that the gearbox positioning may need to be adjusted to compensate for starwheel assembly wear.
- If the previous checks indicate head misalignment due to gearbox positioning, perform gearbox assembly alignment procedure. If head alignment is correct, do not perform adjustment.
- Check gearbox starwheel to headbar engage-disengage positioning. Adjust starwheel position sensing micro-switch for correct positioning if necessary.
- 4. Check pinch roller pressure and adjust if necessary.
- 5. Using a high quality tape with a continuously recorded tone or flux reversal pattern, check the play or read head output for signal levels and quality. Incorrect signals are indicative of head wear, head alignment or tape tracking problems.
- 6. Check tape speed and adjust as described in the Motor Speed Calibration paragraph in section VI.
- 7. Check and adjust the head azimuth as described in the Head Azimuth Adjustment paragraph in section VI.

PHI-DECK® EXPLODED VIEW

PHIDECK PARTS MATRIX

Item			Item		
No.	Description	Quantity	No.	Description	Quantity
1	Cast Chassis	1	37	Capstan Drive Motor *	1
2	Reel Motor	2	38	Set Screw	1
3	Reel Motor Pulley	2	39	Cassette Well	1
4	Reel Motor Belt	2	40	Cassette Well Door	1
5	Cassette Guide Post	2	41	Capstan Drive Belt	1
6	Rear Spring	2	42	Headbar Pivot Sleeve	2
7	Reel Rest Post	2	43	Headbar Pivot Spring	1
8	Bearing Housing Nut	1	44	Headbar Pivot Spacer	2
9	Lock Washer	1	45	Allen Head Screw	2
10	Spacer	2	46	Allen Head Screw	2
11	Machine Screw, Metric	8	47	Dust Protector	1
12	Machine Screw	5	48	Machine Screw	6
13	Side Spring	2	49	Eject Lever Pin	1
14	Plate	1	50	Eject Lever	1
15	Sheet Metal Screw	3	51	Wire Harness Assembly *	1
16	Guide Post Clamp	1	53	Heat Shrink Tubing (inches) *	1.5
17	Snap-action Switch	1	61	Machine Screw	4
18	Machine Screw	2	64	E-Ring	1
19	Flat Washer	1	77	Flat Washer	1
20	Bearing Assembly	1	80	Nut	1
21	Optic Reel Rest	2	81	Headbar	1
22	Reel Rest Slider	2	82	Pressure Roller Assembly	1
23	Reel Rest Sleeve	2	83	Pressure Roller Post	1
24	Reel Rest Spring	2	84	Cable Clamp	1
25	Gearbox Motor	1	85	Machine Screw	1
26	Gearbox Side Assembly "A"	1	86	Pressure Roller Spring	1
27	Gearbox Side Assembly "B"	1	87	Machine Screw	1
28	Starwheel	1	88	Head Azimuth Spring	1
29	Gear	1	89	Head Spacer	Х
30	Gear	1	90	Read/Write Head	X
31	Gear	1	92	Flywheel Assembly	1
32	Pitch Pinion Gear	1	93	Capstan Pulley 5IPS	1
33	Starwheel Shaft	1	94	Flywheel Bracket	1
34	Gear Shaft	2	95	Nylon Set Screw	1
35	Machine Screw, Metric	2	96	Flywheel Washer	1
36	Sheet Metal Screw	1	97	Triple I Label	1

^{*} Item not shown

I. Phideck Wiring

J. PHIDECK CONNECTIONS STANDARDS

In an effort to maintain compatibility between Digital Group systems using Phidecks, complete wiring diagrams have been included for connecting Phidecks to your system. Refer first to the Phideck system block diagram to locate the appropriate wiring diagram. A brief explanation of each diagram is included.

- DETAIL 1: This diagram details the motherboard connections between the I/O Port card and the Phideck card using the wire wrap pins on the 36 pin connector of each board.
- DETAIL 2: The connections between the backplane of the paddle card connector block and the Phideck card 36 pin connector are detailed on this diagram. Complete the wiring as if your system were using four Phidecks, even if you are using less than four decks. There are several wires in the cable for decks 1 and 3 that are common to all the decks. The best approach is to make-up cables with molex connectors on each end that slip over the wire wrap pins. If you should prefer not to use this method, please refer to Appendix C for the actual Phideck card pinout.
- DETAIL 3: This detail shows the cabling between the paddle card going to the CPU cabinet (22 pin) and the paddle card going to the Phideck cabinet (36 pin). There are two groups of wires on this diagram. Shielded cables should be used for the group on the left, since this cable contains the tape head signals. Also note that the shield from the shielded cable doesn't go to chassis ground, but is strictly ground for the tape heads to help avoid noise on the head ground. Ribbon cable (20 conductor) works best for the group on the right.
- DETAIL 4: Phideck cabinet wiring is detailed in this diagram. Your wiring needs will depend on the number of Phidecks in your system. The Phidecks are numbered 0 thru 3, so if you are using only one Phideck, connect the cables labeled for deck 0.

The Digital Group strongly recommends you follow the interconnect standards. This will greatly facilitate repair of your system, should you find it necessary to return it for service. If you send us your system please detail the connections on the paddle card connector block, etc. or state that you are following the Digital Group standard.

PHI-DECK SYSTEM BLOCK DIAGRAM

PHI-DECK CABINET
WIRING
DETAIL 4

PHI-DECK CONTROLLER INTERFACE